КИБЕРНЕТИКА

(от гр.-кормчий): буквально «искусство управлять». Впервые учрежденный Платоном в его «Диалогах», затем был возрожден в 1950 – 1960 гг. и широко распространился в применении к исследованиям о саморегулирующихся машинах, оснащенных «псевдо-мозгом», и, в некотором роде, способных управлять своим трудом (автоматический пилотаж самолетов, системы детектирования, позволяющие ракетам самим ориентироваться на цель, и т.д.). В СССР вначале трактовалась как идеалистическая лженаука. Общая проблема, поставленная кибернетикой, состоит в познании того, можно ли вместе с машинами «создать разум», могут ли машины не быть обязанными творческому уму, доверившему им определенную автономию по отношению к человеку и способность избежать его контроля. В действительности вполне очевидно, что мы никогда не найдем в машине «больше» разума, чем в мозге того, кто был создателем машины, и что разум машины – лишь продукт человеческого разума. Сегодня кибернетика получила необычайное развитие и применение в информационной революции.

Смотреть больше слов в «Евразийской мудрости от А до Я»

КИНЕСТЕТИЧЕСКОЕ →← КАЧЕСТВО

Смотреть что такое КИБЕРНЕТИКА в других словарях:

КИБЕРНЕТИКА

IКиберне́тика (от греч. kybernetike — искусство управления, от kybernáo — правлю рулём, управляю)        наука об управлении, связи и переработке инфор... смотреть

КИБЕРНЕТИКА

IКиберне́тика (от греч. kybernetike — искусство управления, от kybernáo — правлю рулём, управляю)        наука об управлении, связи и переработке инфор... смотреть

КИБЕРНЕТИКА

КИБЕРНЕТИКА [нэ], -и, ж. Наука об общих закономерностях процессовуправления и передачи информации в машинах, живых организмах и обществе. IIприл. кибернетический, -ая,-ое.... смотреть

КИБЕРНЕТИКА

кибернетика ж. 1) Научная дисциплина, изучающая общие закономерности процессов управления и передачи информации в организованных системах (в машинах, живых организмах и обществе). 2) Учебный предмет, содержащий теоретические основы данной дисциплины. 3) разг. Учебник, излагающий содержание данного учебного предмета.<br><br><br>... смотреть

КИБЕРНЕТИКА

кибернетика ж.cybernetics

КИБЕРНЕТИКА

кибернетика продажная девка империализма Словарь русских синонимов. кибернетика сущ., кол-во синонимов: 2 • нейрокибернетика (1) • продажная девка империализма (2) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: нейрокибернетика, продажная девка империализма... смотреть

КИБЕРНЕТИКА

КИБЕРНЕТИКА КИБЕРНЕТИКА (от греч. kybernetike [techne] – искусство управления) – наука о самоуправляющихся машинах, в частности о машинах с электрон... смотреть

КИБЕРНЕТИКА

от греч. ??????????? (?????) – искусство управления, от ???????? – правлю рулем, управляю ] – наука о процессах управления в сложных динамич. системах, основывающаяся на теоретич. фундаменте математики и логики, а также на применении средств автоматики, особенно электронных вычислит., управляющих и информационно-логич. машин. Возникновение К. Элементарными методами, именуемыми в наше время кибернетическими, человечество эмпирически пользовалось издавна – во всех: тех случаях, когда необходимо было управлять к.-л. сложным развивающимся процессом для достижения определ. цели в заданное время. По мере усложнения производственно-технич. процессов, роста взаимодействия множества людей, участвующих в хозяйственной, политич. и воен. деятельности, вовлечения в нее большого количества материальных средств и энергетич. ресурсов все чаще стало давать себя знать противоречие между потребностями улучшения управления, к-рое должно было становиться все более оперативным, основанным на достаточной и своевременно поступающей информации, и реальными возможностями такого улучшения. С наибольшей остротой вопрос о повышении качества управления встал начиная с 40-х гг. 20 в. Это и привело к возникновению К., к-рая открыла дорогу применению точного научного анализа к решению проблемы целесообразного использования соврем. технич. средств для повышения качества управления. К. базируется на достижениях ряда отраслей соврем. науки и техники и, в свою очередь, благотворно влияет на их развитие. Ее возникновение тесно связано, с одной стороны, с работами по созданию сложных автоматич. устройств, а с др. – с развитием наук, изучающих процессы управления и обработки информации в конкретных областях действительности. В подготовке и развитии К. сыграли роль многие области знания: теорий автоматич. регулирования и следящих систем; термодинамика; статистич. теория передачи сообщений; теория игр и оптимальных решений; математич. логика; математич. экономика и др., а также комплекс биологич. наук, изучающих процессы управления в живой природе (теория рефлексов, генетика и др.). Решающую роль в становлении К. имело развитие электронной автоматики и появление быстродействующих электронных вычислит. машин, открывших новые возможности в обработке информации и в моделировании различных систем управления. Осн. идеи К., как особой дисциплины, являющейся синтезом целого ряда направлений научной и технич. мысли, были сформулированы в 1948 Н. Винером в кн. "Cybernetics or control and communication in the animal and the machine", N. Y. (рус. пер. "Кибернетика, или управление и связь в животном и машине", М., 1958). Выдающееся значение для создания К. имели труды К. Шеннона и Дж. Неймана. Еще раньше важную роль в генезисе идей К. сыграли амер. ученый Дж. У. Гиббс и И. П. Павлов. Следует отметить заслуги рус. и сов. школ математиков и инженеров (И. А. Вышнеградской, А. М. Ляпунов, А. А. Андронов, Б. В. Булгаков, А. Н. Колмогоров и др.), к-рые способствовали становлению и развитию К. Предмет К. Предметом изучения К. являются сложные устойчивые динамич. системы управления. Под динамической понимается такая система, состояние к-рой меняется и к-рая содержит в себе множество более простых, взаимосвязанных и взаимодействующих друг с другом систем и элементов. Состояние сложной динамич. системы в целом, так же как и отдельных ее элементов, определяется значениями, к-рые принимают параметры, характеризующие систему и меняющиеся по различным закономерностям. Сложная динамич. система, рассматриваемая с т. зр. процессов и операций управления, т.е. процессов и операций, переводящих ее из одного состояния в другое и обеспечивающих ее устойчивость, наз. системой управления. Всякая система управления (система управления артиллерийским огнем; система управления нар. х-вом, отраслью пром-сти, предприятием, транспортным х-вом и т.д.; система управления кровообращением, пищеварением и т.п. живого организма) состоит из двух систем: управляющей и управляемой. Управляющая система воздействует на параметры управляемой системы с целью перевода ее в новое состояние в соответствии с имеющейся задачей управления. Следует различать три осн. области управления: управление системами машин, производств. процессами и вообще процессами, имеющими место при целенаправл. воздействии человека на предметы труда и процессы природы; управление организов. деятельностью человеч. коллективов, решающих ту или иную задачу (напр., организаций, осуществляющих военные, финансовые, кредитные, страховые, торговые, транспортные и др. операции); управление процессами, происходящими в живых организмах (сюда относятся высокоцелесообразные физиологич., биохимич. и биофизич. процессы, связанные с жизнедеятельностью организма и направленные на его сохранение в изменяющихся условиях существования). Во всех указанных областях имеются устойчивые динамические системы, в которых самопроизвольно или же принудительно осуществляются процессы управления; при этом часто имеют место сложные взаимодействия управляющих и управляемых систем. Примером могут служить живые организмы, в к-рых функции управляющих и управляемых систем непрерывно и многократно переплетаются. То общее, что имеется в процессах управления в самых различных областях, независимо от их физич. природы, и составляет предмет К.; сами же эти области выступают как сферы применения К. Правомерность существования К. как науки обусловлена универсальностью процессов управления, создание единой теории к-рых является ее главной задачей. Хотя К. занимается изучением сложных развивающихся процессов различной природы, она исследует их только с т. зр. механизма управления. Ее не интересуют проявляющиеся при этом энергетич. соотношения, экономич., эстетич., общественная сторона явлений. Взаимосвязи управляющих и управляемых систем в К. изучаются лишь в той мере, в какой они допускают выражение средствами математики и логики. При этом в К. ставится задача выработать рекомендации по наилучшим приемам и методам управления для быстрейшего достижения поставленной цели. К. изучает процессы управления прежде всего с целью повышения эффективности человеч. деятельности. К. можно подразделить на теоретич. К. (математич. и логич. основы, а также филос. вопросы К.), технич. К. (конструирование и эксплуатация технич. средств, применяемых в управляющих и вычислит. устройствах) и прикладную К. (приложения теоретич. и технич. К. к решению задач, относящихся к конкретным системам управления в различных областях человеч. деятельности, – в пром-сти, в энергоснабжении, на транспорте, в службе связи и т.п.). Т.о., К. – это наука об общих принципах управления, о средствах управления и об использовании их в технике, в человеч. об-ве и в живых организмах. Основные понятия и разделы т е о р е т и ч е с к о й К. Для любых процессов управления характерно наличие: системы, состоящей из управляемой и управляющей частей; цели управления; алгоритма управления; взаимодействия данной системы управления с внешней средой, являющейся источником случайных или систематич. помех, а также осуществление управления на основе приема и передачи информации. Системы, в к-рых процессы управления обеспечивают их устойчивость в меняющихся условиях внешней среды, наз. устойчивыми динамич. системами управления, или организованными системами. Наличие цели – характерная черта любого процесса управления; управление – это организация целенаправленного (целесо-образного) воздействия. Задача (цель) либо ставится в самом начале управления, либо вырабатывается в процессе управления. В общем случае целью управления является приспособление данной динамич. системы к внешним условиям, необходимое для ее существования или для выполнения свойственных ей функций. Управление всегда осуществляется на основе приема, сохранения, передачи и переработки информации в условиях взаимодействия данной динамич. системы с внешней средой. Процесс функционирования системы управления (процесс управления) в общем случае осуществляется по след. схеме. Управление начинается со сбора информации о ходе процесса, подлежащего управлению (об управляемой системе); эта информация преобразуется в удобный для передачи по каналам связи вид и поступает в управляющую систему (напр., человеч. мозг или управляющую машину). Используя определ. правила или возможности, управляющая система перерабатывает получаемую информацию в соответствии со стоящими перед ней задачами, в результате чего вырабатываются команды управления; последние передаются в исполнит. механизмы или органы и, воздействуя на параметры управляемой системы, изменяют ее состояние. Весьма важным, характерным для всех сложных случаев управления, является использование обратных связей. Сущность обратной связи состоит в том, что от исполнит. органов (органов управляемой системы) к управляющим органам по особым каналам связи (наз. каналами обратной связи) передается информация о фактич. положении этих органов и о наличии внешних воздействий; эта информация используется управляющими органами для выработки команд управления. Обратные связи в передаче информации позволяют учитывать управляющей системой фактич. состояние органов управляемой системы, а также воздействия на нее внешней среды. Понятие информации является одним из основных в К., а теория информации занимает существенное место в комплексе дисциплин, составляющих теоретич. фундамент К. Больше того, К. часто вообще характеризуют как науку о способах восприятия, передачи, хранения, переработки и использования информации в машинах, живых организмах и их объединениях. Передача информации осуществляется при помощи сигналов – физич. процессов, у к-рых определ. параметры находятся в определенном (обычно однозначном) соответствии с передаваемой информацией. Установление такого соответствия наз. кодированием. Хотя на передачу сигналов расходуется энергия, количество ее в общем случае не связано с количеством, а тем более с содержанием передаваемой информации. В этом состоит одна из принципиальных особенностей процессов управления: управление большими потоками энергии может осуществляться при помощи сигналов, требующих для своей передачи незначит. количества энергии. Получившая в наст. время широкое развитие т. н. статистич. теория информации возникла из потребностей техники связи и указывает пути повышения пропускной способности и помехоустойчивости каналов передачи информации. Главной задачей этой теории является определение меры количества информации в сообщениях в зависимости от вероятности их появления. Редким сообщениям приписывается большее количество информации, а частым – меньшее; количество информации в сообщении измеряется изменением в степени неопределенности ожидания нек-рого события до и после получения сообщения о нем. Статистич. теория информации имеет фундаментальное науч. значение, далеко выходящее за пределы теории связи. Установлена глубокая аналогия и связь между понятием энтропии в статистич. физике и статистич. мерой количества информации. Энтропия любой физич. системы может рассматриваться как мера недостатка информации в данной системе. С увеличением энтропии системы количество информации уменьшается, и наоборот. В связи с этим представляется возможным подойти с количеств. стороны к оценке информации, содержащейся в физич. законах, к информации, получаемой при физич. экспериментах, и т.д. Статистич. теория информации позволяет также получить общее определение понятия о р г а н и з а ц и и и количеств. меру для оценки степени организации любой системы. Именно, степень организации измеряется тем количеством информации, к-рое нужно ввести в систему, чтобы перевести ее из начального беспорядочного состояния в заданное организованное состояние. Однако в статистич. теории информации не учитывается смысл и ценность передаваемых сообщений, а также возможность дальнейшего использования полученной информации. Эти вопросы составляют предмет др. науч. направления – семантич. теории информации, к-рая находится в стадии становления. Семантич. теория информации занимается изучением сущности процессов выработки информации живыми организмами, исследованием возможностей и методов автоматич. опознавания образов, классификацией информации, изучением процессов выработки понятий и т.п. Вопросы, относящиеся к области этой теории, приобретают значение в связи с работами по моделированию процессов накопления "опыта" и опознавания образов, свойственных живым организмам, с помощью как электронных программно-управляемых машин универс. назначения, так и спец. устройств. К числу дисциплин, составляющих теоретич. основу К., помимо теории информации, относятся: теория программирования, теория алгоритмов, теория управляющих систем, теория автоматов и нек-рые др. Теория программирования в широком смысле может рассматриваться как теория методов управления. Она исследует способы использования информации с целью определения линии поведения (программы) управляющих систем в зависимости от конкретной обстановки. Способность в той или иной степени оценивать обстановку и вырабатывать нек-рую программу поведения – вырабатывать решения, приводящие к достижению нек-рой цели, – присуща любым системам управления, как естественным (системы живой природы), так и искусственным (технич. устройства). По своему характеру процессы выработки решений весьма многообразны. Они могут осуществляться, напр., в виде случайного выбора решения, в виде выбора по аналогии, путем логич. анализа и т.д. В К. для анализа систем управления широко используются математич. методы выработки оптимальных (т. е. наилучших в к.-л. отношении) решений, таких, как линейное и динамич. программирование, статистич. методы нахождения оптимальных решений и методы теории игр. После того как определена общая линия поведения системы, необходимо выяснить, какие конкретные шаги и в какой последовательности нужно осуществить, для того чтобы достигнуть поставленной цели. При решении этой задачи используются средства теории алгоритмов. Следующий круг вопросов; относящихся к методике управления, связан с исследованием возможностей реализации выработанных решений и алгоритмов в системах, обладающих определ. свойствами; он составляет сферу общей теории программирования. Теория программирования в узком смысле этого слова занимается разработкой методов автоматизации процессов переработки информации и способов представления различных алгоритмов в форме, необходимой для их реализации на электронных программно-управляемых машинах. Одна из осн. задач К. – сравнит. анализ и выявление общих закономерностей процессов переработки информации и управления, происходящих в естеств. и искусств. системах. К. выделяет следующие осн. классы таких процессов: мышление; рефлекторная деятельность живых организмов; изменение наследств. информации в процессе биологич. эволюции; переработка информации в различных автоматич., экономич. и административных системах, а также в науке. Общее описание управляющих систем, их взаимодействия с управляемыми системами, а также разработка методов построения управляющих систем составляют задачу теории управляющих систем. Примерами управляющих систем, на основе изучения к-рых строится эта теория, могут служить: нервная система животного, программно-управляемые вычислит. машины, системы управления технологич. процессами и др. Большую роль в теории управляющих систем играет рассмотрение абстрактных систем управления, представляющих собой математич. схемы (модели), сохраняющие информац. свойства соответств. реальных систем. В рамках К. возникла спец. логико-математич. дисциплина – теория автоматов, изучающая важный класс абстрактных автоматов, т.н. дискретные автоматы, т.е. системы, в к-рых перерабатываемая информация выражается квантованными сигналами, множество к-рых конечно. Значит. место в теории автоматов занимает логико-математич. анализ т. н. нервных (или нейронных) сетей, моделирующих функциональные элементы мозга. Важным свойством сложных систем управления является иерархичность управления, к-рая состоит в том, что для реализации нек-рой функции управления строится ряд механизмов (или алгоритмов) с последовательно возрастающими уровнями управления. Непосредств. управление исполнит. органами осуществляет гл. обр. механизм управления низшего уровня. Работу этого механизма контролирует механизм 2-го уровня, к-рый сам контролируется механизмом 3-го уровня и т.д. Сочетание принципа иерархичности управления с принципом обратной связи придает системам управления свойство устойчивости, состоящее в том, что система автоматически находит оптимальные состояния при довольно широком круге изменений внешней обстановки. Эти принципы обеспечивают приспособляемость систем управления к изменяющимся условиям и лежат в основе биологич. эволюции, процессов обучения и приобретения опыта живыми организмами в течение их жизни; постепенная выработка условных рефлексов и их наслаивание являются не чем иным, как повышением уровней управления в нервной системе животного. Принципы иерархичности управления и обратной связи используются также при построении сложных управляющих систем в технике. При изучении систем управления возникают два рода вопросов: один из них относится к анализу структуры системы управления и определению алгоритма, реализуемого ее управляющими органами; другой – к синтезу (из данных элементов) системы, обеспечивающей выполнение заданного алгоритма. Общими требованиями, к-рыми руководствуются при этом, являются обеспечение заданного быстродействия системы, точности работы, минимального количества элементов и надежности функционирования системы. Весьма плодотворным при исследовании структуры систем управления, в т.ч. экономич. систем, военных или административных организаций, является метод их математич. моделирования. Он состоит в представлении исследуемого процесса в виде системы уравнений и логич. условий. Общий алгоритм (система уравнений) моделирования любого процесса включает в себя, как правило, две осн. части: одна часть описывает работу исследуемой системы управления (или управляющего алгоритма, если изучается к.-л. новый управляющий алгоритм), а вторая часть описывает (моделирует) внешнюю обстановку. Повторяя многократно процесс решения системы уравнений при ее различных характеристиках, можно изучить закономерности моделируемого процесса, оценить влияние отд. параметров на его протекание и выбрать их оптимальные значения. Кроме математич. моделирования, в К. применяются и др. виды моделирования, сущность к-рых сводится к замене изучаемой системы изоморфной ей системой (см. Изоморфизм), к-рую удобнее воспроизвести и изучить в лабораторных условиях. Особый интерес с т. зр. К. представляют самоорганизующиеся системы управления, обладающие свойством самостоятельно переходить из произвольных начальных состояний в определ. устойчивые состояния. Состояние таких систем изменяется под влиянием внешних воздействий случайным образом, но благодаря спец. регулирующим механизмам высших уровней эти системы отбирают наиболее устойчивые состояния, соответствующие характеру внешних воздействий. Свойство самоорганизации может проявляться только у систем, обладающих определ. степенью сложности, в частности избыточностью структурных элементов, а также случайными, меняющимися в результате взаимодействия с внешней средой, связями между нек-рыми из них. К таким системам относятся, напр., сети нейронов мозга, нек-рые типы колоний живых организмов, искусств. самоорганизующиеся электронные системы, а также нек-рые типы сложных экономич. и адм. объединений. По своим теоретич. методам К. является математич. наукой, широко использующей аналогии и моделирование. А. Н. Колмогоровым выдвинута более широкая трактовка теоретич. К., охватывающая не только математич. теорию процессов управления, но и систематич. изучение различных физич. принципов работы систем управления с т. зр. их способности нести и перерабатывать информацию. При этом в К. включается рассмотрение таких, напр., вопросов, как зависимость предельного быстродействия систем управления от их размеров, обусловленная конечностью скорости распространения света, ограничения возможностей систем малых размеров в однозначной переработке информации, связанные с проявлением законов квантовой физики, и т.п. Такой подход открывает широкие возможности дальнейшего развития К. Значение К. для науки и т е х н и к и . Значение К. для научно-технич. прогресса определяется возросшими в наст. время требованиями к точности и быстродействию систем управления, а также усложнением самих процессов управления и связано прежде всего с созданием и внедрением электронных вычислит. машин. Эти машины работают по заранее составленным программам, способны выполнять сотни тысяч и миллионы арифметич. и логич. операций в секунду и обладают запоминающими устройствами для хранения многих миллионов чисел. Можно выделить две осн. области применения К. в технике: 1) для управления машинами и комплексами машин в промышленности, на транспорте, в военном деле и т.д.; 2) применение средств К., особенно вычислит. машин, для выполнения трудоемких расчетов и моделирования различных динамич. процессов. Наиболее яркий пример – применение электронных машин для расчетов траекторий движения искусств. спутников земли, межконтинентальных и космич. ракет и др. Применение электронных машин в области науч. и технич. исследований и разработок позволяет во мн. случаях сократить эксперимент. исследования и натурные испытания, что приводит к значит. экономии материальных средств и времени при решении науч. проблем и создании новой техники. Большие перспективы для повышения производительности науч. работы имеет проблема непосредств. взаимодействия человека и информац. машины в процессе творч. мышления при решении науч. задач. Науч. творчество включает в себя значит. работу по подбору информации, ее обобщению и представлению в форме, удобной для анализа и выводов. Такая работа вполне может выполняться машиной в соответствии с запросами и указаниями человека. Вычислит, машины уже находят практич. применение в области автоматизации научно-информационной работы и перевода иностр. текстов. Эти машины имеют особенное значение в связи с ростом объема науч. и др. литературы. В силу характера К., как науки о закономерностях процессов, протекающих в системах управления самой различной природы, она развивается в тесной связи с целым рядом др. областей знания. Применение результатов и методов К., использование электронных вычислит. машин уже показали свою плодотворность в биологич. науках (в физиологии, генетике и др.), в химии, психологии и т.д. Идеи и средства К. и математич. логики, будучи примененными к изучению языка, породили новое науч. направление – лингвистику математическую, являющуюся основой для работ в области автоматизации перевода с одного языка на другой и играющую важную роль в разработке информационно-логич. машин для различных областей знания. С др. стороны, фактич. материал наук, имеющих дело с реальными системами управления и переработки информации, а также возникшие в этих науках проблемы являются источником дальнейшего развития К. как в ее теоретическом, так и в связанном с техникой аспектах. Так, за последние годы возникла новая область технической К. – б и о н и к а, занимающаяся изучением систем управления и чувствит. органов живых организмов с целью использования их принципов для создания технич. устройств. Разработка подобных систем, в свою очередь, позволяет более глубоко подойти к пониманию процессов, происходящих в системах управления живой природы. В качестве примера можно указать на изучение структуры мозга, обладающего исключит. надежностью. Выход из строя довольно значит. участков мозга в результате операций иногда не приводит к потере к.-л. функций за счет своеобразной их компенсации др. участками. Это свойство представляет большой интерес для техники. С филос. т. зр. большое значение имеет то, что К., особенно такие ее разделы, как теория самоорганизующихся систем, теория автоматов, теория алгоритмов и др., а также развившиеся в рамках К. методы моделирования способствуют более глубокому изучению систем управления живых организмов, раскрытию закономерностей функционирования нервной системы животных и человека, познанию характера взаимодействия между организмом и внешней средой, изучению механизмов мышления; особенно большое научное и практич. значение имеет исследование с кибернетич. т. зр. деятельности головного мозга человека, к-рый обеспечивает возможность восприятия и переработки огромного количества информации в органах малого объема с ничтожной затратой энергии. Этот комплекс проблем является источником важных идей К., в частности, идей, относящихся к путям создания новых автоматич. устройств и вычислит. машин. Методика применения К. в нейрофизиологии в общих чертах такова. На основе эксперимент. исследования, данных физиологии и результатов К. строится рабочая гипотеза о нек-рых механизмах работы головного мозга. Правильность и полнота этой гипотезы проверяются при помощи моделирования; в универсальную вычислит. машину (или спец. автоматич. устройство) вводится программа, выражающая эту гипотезу; анализ работы машины показывает, насколько полным и точным было содержавшееся в гипотезе представление об изучаемых механизмах мозга. Если эти механизмы изучены неполно и гипотеза несовершенна, то машина не будет обнаруживать (т.е. моделировать) тех процессов, к-рые пытаются в ней воспроизвести. В этом случае анализ работы кибернетич. модели может привести к выявлению дефектов гипотезы и к постановке новой серии экспериментов; на основе последних выдвигается новая гипотеза и строится более совершенная модель и т.д., пока не удастся построить автомат, достаточно хорошо моделирующий изучаемые нервно-физиологич. процессы; осуществление такого автомата подтверждает справедливость представлений, составляющих гипотезу. Такой способ исследования, с одной стороны, приводит к созданию новых, более сложных автоматов (программ), а с другой – к более полному выявлению механизмов работы головного мозга. В частности, применение его показало, что возможно дать анализ сложных форм функционирования головного мозга на основе относительно простых принципов. На этом пути удалось, напр., найти подход к анализу способности головного мозга решать сложные проблемы (и создать специальные автоматы, моделирующие решение этих проблем); достигнуть успехов в изучении проблем обучения и самообучения и т.д. Для изучения проблемы обучения и создания самообучающихся систем большое значение приобретает использование принципов выработки условных рефлексов и вообще методов изучения головного мозга, разработанных И. П. Павловым. Эти методы помогают в решении проблемы отбора из всей поступающей в управляющую систему информации той ее части, к-рая имеет достоверный и полезный для данной системы характер, а также в решении проблемы сокращения числа пробных взаимодействий с внешней средой и в др. вопросах. С проблемами этого рода тесно связаны работы по изучению принципов оптимальной организации поисковых действий в неизвестной среде и исследования по выявлению методов оптимального управления сложными системами. Для более глубокого анализа нек-рых сложных форм работы мозга большое значение имеют исследования по созданию машин, способных опознавать образы, и особенно машин, способных обучаться такому опознаванию; эти исследования непосредственно связаны с работами по конструированию автоматов, могущих воспринимать человеч. речь и "читать" печатный текст. Следует отметить также кибернетич. модели "черепах", "мышей" и т.д., действиям к-рых придается внешнее сходство с поведением животных; эти модели приобретают научную ценность в том случае, если преследуют цель проверки к.-л. научных гипотез. Большое значение для исследования принципов управления и переработки информации в головном мозге имеет разработка теории нервных сетей, в создании к-рой большую роль сыграли У. Мак-Каллок и В. Питс. В основе деятельности мозга лежит функционирование сложных систем особым образом соединенных между собой нейронов; в этих системах проявляются закономерности, отсутствующие в работе отд. нейронов или относительно простых их групп. Изучение таких систем связано с большими трудностями, для преодоления к-рых приходится сочетать эксперимент. исследования с использованием метода моделирования и абстрактно-математич. способа рассмотрения, в частности аппарата совр. логики. Значение теории нервных сетей состоит в том, что, эта теория служит источником рабочих гипотез, к-рые проверяются на экспериментальном нейро-физиологич. материале. В случае, если анализу подлежат сложные формы деятельности мозга (обучение, узнавание образов и т.п.), средств одной лишь теории нервных сетей оказывается недостаточно; поэтому приходится начинать с изучения системы правил переработки информации, лежащих в основе изучаемых форм деятельности мозга, и лишь потом создавать гипотезы о структуре реализующей их нервной сети и строить ее логико-математич. модели. Большой интерес для нейрофизиологии представляет разработка моделей, включающих случайным образом соединенные между собой элементы и способных в процессе работы самоорганизовываться и приобретать целесообразное поведение, а также изучение различных форм кодирования информации в центральной нервной системе и перекодирования ее в нервных центрах. Использование теории вероятностей и теории информации открывает путь точному анализу закономерностей переработки информации в нервной системе. Большой интерес с т. зр. К. представляет изучение естеств. способов кодирования наследств. информации, обеспечивающих сохранение огромных количеств информации в ничтожных объемах наследств. вещества, содержащего уже в зародышевой клетке осн. признаки взрослого организма. Результатом взаимодействия К; с др. областями знания является углубление связи К. с практикой. Так, осуществляемый средствами К. анализ работы самоорганизующихся систем управления, функционирующих в организме человека и животных, все более приобретает непосредственно практич. значение. Напр., К. уже оказывает существ. помощь в борьбе за здоровье людей. Причины многих заболеваний (грудная жаба, гипертония и др.) тесно связаны c нарушением процессов управления деятельностью внутр. органов, осуществляемого головным мозгом; большую роль в развитии заболеваний играет возникновение патологич. форм управления, вызывающих стойкое изменение в функционировании отд. органов и систем организма; кибернетич. подход к изучению такого рода болезней указывает новые пути мед. воздействия на больной организм. Использование К. в невропатологии и психиатрии привело в наст. время к созданию представлений о нейрофизиологич. механизмах возникновения треморов, нарушений координации движений, психозов навязчивости и др.; на этой основе разрабатываются новые методы нейрохирургич. лечебного вмешательства. Использование К. позволила создать ряд аппаратов, возмещающих утраченные или временно выключенные функции организма (таковы, напр., автомат "Сердце-легкие", позволяющий полностью отключить сердце и малый круг кровообращения, заменяя то и другое на время хирургич. вмешательства; активные моторизованные протезы конечностей, управляемые биоэлектрич. потенциалами мышц культи; автоматы для искусств. дыхания и др.). Проводятся эксперименты по созданию приборов для чтения для слепых. Во все возрастающей степени К. используется для целей мед. диагностики. С ее помощью реализован ряд синтез-анализаторных аппаратов для автоматич. получения картины движения электрич. диполя сердца (по электрокардиограммам), для анализа биоэлектрич. потенциалов мозга, для синтезирования целостной картины электрич. поля мозговой коры и для вариационно-статистич., аутокорреляционной и т.д. обработки кривых патофизиологич. процессов. В отд. клинич. отраслях ведутся работы по программированию сводных диагностич. таблиц, основываемых на массовом материале и обещающих в будущем возможность использовать консультацию электронных машин в постановке диагнозов в сложных случаях и на ранней стадии тяжелых заболеваний. К. в социалистическом о б щ е с т в е. В обществе имеются области управления, к к-рым применима К.; таковы машины и системы машин, технологич. процессы, транспортные операции, деятельность коллективов людей, решающих определ. задачи в области экономики, воен. дела и т.д. По мере прогресса обществ. произ-ва, науки и техники, с одной стороны, растут трудности в организации управления, а с другой – повышаются требования к его качеству, т.к. управление должно становиться все более и более точным и оперативным. Особенно большие требования предъявляются к процессам управления в социалистич. об-ве, т.к. в нем осуществляется п л а н о в о е развитие экономики и культуры. Ленин неоднократно указывал на значение науч. организации управленч. труда. В статье "Лучше меньше, да лучше", советуя привлекать к работе в советском госаппарате безупречных коммунистов и рабочих, он обратил внимание на то, что они "...должны выдержать испытание на знание основ теории по вопросу о нашем госаппарате, на знание основ науки управления..." (Соч., т. 33, с. 449). Ленин требовал науч. разработки вопросов организации труда и специально труда управленческого. Следуя указаниям Ленина, КПСС всегда уделяла большое внимание совершенствованию процессов управления в сов. об-ве. Для разработки методов управления, для повышения эффективности управленч. труда в социалистич. об-ве применение К. имеет исключительно важное, общегосударств. значение. К. вырабатывает такие методы, создает, такие науч. и технич. средства, к-рые позволяют осуществлять в оптимальном режиме процессы управления в нар. х-ве и адм. деятельности, в н.-и. работе, т.е. достигать поставл. целей с наименьшими затратами времени, труда, материальных средств и энергии. Планомерное, осуществляемое под руководством Коммунистич. партии и социалистич. гос-ва применение средств К. имеет важнейшее значение для оптимального управления целенаправленным, высокоэффективным и хорошо организованным трудом строителей коммунизма. Поэтому КПСС требует полностью использовать и поставить на службу строительству коммунизма науч. и технич. возможности К. В ходе развернутого строительства коммунизма в СССР, как говорится в Программе КПСС, получат широкое применение "...кибернетика, электронные счетно-решающие и управляющие устройства в производственных процессах промышленности, строительной индустрии и транспорта, в научных исследованиях, в плановых и проектно-конструкторских расчетах, в сфере учета и управления" (1961, с. 71). К. составляет теоретич. фундамент комплексной автоматизации производств. процессов. Совр. уровень развития производит. сил социалистич. об-ва требует все более широкого применения в управлении учреждениями, предприятиями, цехами, производств. участками и т.д. автоматизированных систем, основанных на использовании методов К. и электронной вычислит. техники. Успешное осуществление автоматизации создает возможности для резкого повышения производительности труда, увеличения выпуска продукции, достижения ее оптимальной себестоимости и улучшения качества. Важнейшее значение имеет применение К. в управлении экономикой и в экономич. исследованиях, а также в сфере учета, статистики, адм. деятельности, коммуникаций и т.д. Говоря о приложении К. в экономике, следует различать применение электронных машин для автоматизации процессов сбора и переработки информации и применение математич. средств К. (аппарата теории игр, линейного и динамич. программирования, теории массового обслуживания, методов исслед ... смотреть

КИБЕРНЕТИКА

- наука об управлении, связи и переработке информации (буквально "искусство управления рулем"). Первым, кто употребил этот термин для управления в обще... смотреть

КИБЕРНЕТИКА

КИБЕРНЕТИКА(древнегреч. kybernetike (techne) — ‘искусство управления’) — отрасль знания, суть которого была сформулирована Винером как наука ‘о связи, ... смотреть

КИБЕРНЕТИКА

(древнегреч. kybernetike [techne] *искусство управления*) отрасль знания, суть которого была сформулирована Н. Винером как наука *о связи, управлении и контроле в машинах и живых организмах* в книге *Кибернетика, или управление и связь в животном и машине* (1948). В 1959 академик А.Н. Колмогоров писал: *...Сейчас уже поздно спорить о степени удачи Винера, когда он... в 1948 году выбрал для новой науки название кибернетика. Это название достаточно установилось и воспринимается как новый термин, мало связанный с греческой этимологией. Кибернетика занимается изучением систем любой природы, способных воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования. При этом кибернетика широко пользуется математическим методом и стремится к получению конкретных специальных результатов, позволяющих как анализировать такого рода системы (восстанавливать их устройство на основании опыта обращения с ними), так и синтезировать их (рассчитывать схемы систем, способных осуществлять заданные действия). Благодаря этому своему конкретному характеру, кибернетика ни в какой мере не сводится к философскому обсуждению природы целесообразности в машинах и философскому анализу изучаемого ею круга явлений*. К. возникла на стыке математики, логики, семиотики, физиологии, биологии, социологии (до этого слабо связанных между собой) и с начала 1950-х (наряду с физикой, химией и биологией) стала оказывать существенное влияние на развитие мировой науки. Тектология (всеобщая организационная наука) Богданова (СССР, 1920-е) предшествовала К. у Винера (как минимум, в ее системной части; причем в своих работах Богданов применял лишь качественные методы) . Для К. центральное значение имеет понятие *информация* , которая, по Винеру, является обозначением *...содержания, полученного из внешнего мира в процессе нашего приспособления к нему и приспособления к нему наших чувств...*. Т.е., для Винера информация это знание, имеющее одну ценностную меру по отношению к внешней среде (семантика) и другую ценностную меру по отношению к накопленным получателем знаниям, целям познания (прагматика). При этом Винер интерпретировал любую информацию, вне зависимости от ее конкретного содержания и назначения, как выбор между двумя или более значениями, наделенными известными вероятностями (селективная концепция информации), что позволило начать исследования всех процессов при помощи разработанного им единого аппарата математической статистистики (откуда берет начало идея о К. как общей теории управления и связи первое основание К.). В К. *связь* это процессы восприятия информации, ее хранения и передачи; *управление* это процессы переработки воспринятой информации в сигналы, корректирующие функционирование кибернетической системы. Если система в состоянии самостоятельно воспринимать и применять информацию о результатах своего функционирования, то такая система обладает средствами обратной связи, причем переработку такого рода информации в сигналы, корректирующие функционирование системы, в К. называют *контролем (регулированием)*. Осуществляющие связь, управление или контроль элементы кибернетической системы рассматриваются в К. исключительно как носители (преобразователи) информации. Определяющее значение имеет в К. понятие *количество информации* (количество выбора), введенное в явной форме основоположником теории информации К.Э. Шенноном. Количество информации (по Винеру отрицательная энтропия) является, как и количество вещества, и количество энергии, одной из фундаментальных характеристик явлений природы. Это второе основание К., интерпретация ее Винером как теории организации, теории борьбы с мировым Хаосом, с возрастанием энтропии. Колмогоров писал: *...с точки зрения кибернетики, конкретная материальная природа хранящих, передающих или перерабатывающих информацию элементов кибернетической системы, как и количество затрачиваемой на их работу энергии, являются подчиненными обстоятельствами. В процессе эволюции живых организмов возникли тончайшие механизмы хранения огромного количества информации в ничтожных объемах памяти (например, механизм наследственности, сохраняющий в одной клетке весь запас видовых признаков взрослого организма), а также механизмы, способные воспринимать и перерабатывать огромное количество новой информации с ничтожной затратой энергии (например, механизмы памяти и мышления в коре головного мозга)...*. Функционирующий элемент кибернетической системы воспринимает информацию из внешней среды и применяет ее для выбора адекватного поведения. По Винеру, информация никогда не создается, она только передается и принимается, но при этом искажается *шумом* (помехами) на пути к объекту и внутри его; и для этого объекта может быть потеряна. Борьба с энтропией это борьба с *шумом*, искажением информации (выступающим как бы *семантической сущностью* материи, которая при этом отождествляется с одновременно взаимодействующими веществом, энергией, информацией и знаниями, которые все находятся во взаимопереходах из одного в другой в соответствии с законами сохранения; причем в этих взаимодействиях вещество выступает *носителем* знания, а энергия выступает *носителем* информации). В К. постулирован принцип единства информации и управления (базисно важный для анализа сущности процессов, протекающих в самоорганизующихся технических и биосоциальных системах). Винер полагал, что процесс управления в таких системах является процессом переработки некоторым центральным устройством информации, получаемой от сенсор-рецепторов (источников первичной информации) и передачи ее туда, где она будет восприниматься как требование выполнения определенного действия. По завершении этого действия сенсор-рецепторы приводятся в готовность к передаче информации об изменении ситуации для исполнения следующего управленческого цикла. Главная роль в движении информации по системе и данном циклическом алгоритме управления принадлежит содержанию информации, передаваемой сенсор-рецепторами и центральным устройством. В связи с этим Колмогоров писал, что *...регулирующие механизмы второго порядка, которые накапливают информацию о результатах деятельности того или иного управляющего или регулирующего механизма первого порядка, способны использовать эту информацию для целесообразного изменения устройства и способа действий этого механизма первого порядка. Классическим образцом такого регулирования второго порядка является механизм выработки условных рефлексов. Над системой уже установившихся, выработанных рефлексов, т.е. связей между внешними раздражителями и реакциями организма, здесь господствует механизм выработки новых рефлексов. Входными сигналами для этого механизма являются *подкрепления*, получаемые в случае соответствия реакции нуждам организма, и *торможения* в случае несоответствия...*. Категория *управление* является базисной категорией К. Все другие категории субординированы (координированы) этой категорией. (Необходимо отметить, что существует подход к К. как к науке, изучающей способы создания, раскрытия строения и тождественного преобразования алгоритмов, описывающих процессы управления, протекающие в действительности.) Смысл категории *управление* в К. может быть раскрыт только через более общие категории структуры и функции, причинности и целесообразности и других *невнутренних* категорий К. В общем случае, управление в кибернетической системе представляет собой цикл, совершаемый в контуре информационных обменов, состоящего из органа управления, каналов прямой связи и каналов обратной связи. Управляющие воздействия представляют собой информацию управления (информацию о дальнейших надлежащих действиях объекта управления). Сведения о состоянии объекта и другие данные, поступающие от объекта органу управления, являются информацией состояния. Фактически, управление это совокупность процесса сбора, обработки, преобразования и передачи информации для осуществления целенаправленного функционирования любой кибернетической системы, которая должна осуществлять такие процессы и включать в себя исполнителя, источник-накопитель энергии, источник и приемник сигналов, систему передачи сигналов от источника к исполнителю. В краевом состоянии кибернетическая система полностью неопределенна с максимумом энтропии. В процессе функционирования системы, при потреблении ею энергии, она потребляет информацию, уменьшающую разнообразие (неопределенность) и делающую поведение системы предсказуемым; энтропия уменьшается. Поступление информации позволяет управлять кибернетическими системами. Информация уменьшает разнообразие, а это главный метод регулирования. Наличие в кибернетической системе помех в каналах информационных обменов (*шума*) ведет к увеличению разнообразия (энтропии), не увеличивая содержания информации. Если энтропия кибернетической системы возрастает, то система деградирует. Для противодействия деградации в кибернетическую систему за счет затрат энергии вводят негэнтропию (дополнительную информацию), т.к. естественным состоянием любой системы, обладающей способностью изменять свои стохастические характеристики, является рост энтропии (потеря информации). Условия осуществимости управления: 1) детерминированность (наличие причинно-следственных связей между компонентами) системы; 2) динамичность системы; 3) наличие управляющего параметра, воздействием на который возможно изменять направление трансформаций; 4) свойство усиления (способность системы претерпевать существенные пространственно-временные и/или энергетические трансформации под воздействием малых изменений управляющего параметра). Т.к. системы имеют протяженность в пространстве, то: 1) воздействие управляющего параметра и трансформация системы разнесены во времени; 2) управляющий параметр и объект управления имеют различную физическую природу; 3) в подсистемах управления производится хранение, преобразование и передача управляющей информации. Содержание процесса управления характеризуется целью управления гомеостазисом уравновешиванием системы с трансформирующейся внешней средой, эффективным противодействием деструктивным воздействиям внешней среды для стабилизации жизненно важных параметров кибернетической системы. Эффективными считают кибернетические системы, которые для достижения одинаковых целей применяют минимальное количество информации. Все остальные системы аналогичного назначения информационно-избы-точны. Существует непосредственная связь между управлением и превращением энергии: по Г.Н. Алексееву, *управление сводится к изменению потока энергии того или иного вида в различных системах... Активное воздействие человека на природу, т.е. труд, возможно рассматривать как управление энергетическими потоками внешней природы, причем источником энергии для этого служит сама природа, а трудовая деятельность совершается только тогда, когда энергии получается больше, чем затрачивается*. П.Г. Кузнецов утверждает, что *...такой механизм обмена возможен, если внутри человеческого организма имеется логическое управляющее устройство, которое работает по следующей программе: 1) *запоминает* физическую последовательность мышечных движений; 2) *вычисляет* полную величину затрат энергии на них; 3) *запоминает* последовательность результатов воздействия на природу; 4) *вычисляет* эффективность трудового процесса; 5) производит *логическую* операцию: принимает программу последовательности движений, если эффективность выше средней, и отвергает, если ниже...*. Г.Н. Алексеев утверждает при этом, что *...по такой программе в принципе возможно построить... действие любого устройства, которое ведет активный поиск оптимального режима управления, описывается подобной программой и имеет конечной целью экономию расходования энергии. Следовательно, общественная деятельность людей в процессе производства есть неэквивалентный обмен энергией с природой, в результате которого должен увеличиться энергетический бюджет общества (или, соответственно, негэнтропия)...*. По Л. Бриллюэну, главный критерий кибернетических систем их энергоэнтропийная эффективность, т.е. отношение увеличения негэнтропии (приобретенной информации) к увеличению энтропии во внешних системах (источниках энергии). На современном этапе развития К. в состоявшихся как научное направление работах по созданию искусственного интеллекта (кибернетического разума) обнаруживается спектр самых разнообразных взглядов на возможность построения рассуждающих систем, основанных на знаниях. Рассматривая возможность создания искусственного интеллекта (кибернетического разума) на основе кибернетического моделирования, необходимо отметить следующее. В К. моделируются только функции мозга, поддающиеся логической обработке (т.е. связанные с получением, обработкой и выдачей информации). Все остальные самые разнообразные функции человеческого мозга остаются за рамками К. Например, многие понятия К. антропоморфны: на кибернетические системы перенесены (правомерно или нет) понятия цели, выбора, решения, условного рефлекса, памяти и др. Однако *...существуют такие функции человека, которые не могут выполняться компьютерами. И это объясняется не ограниченностью их возможностей, а тем, что такие чувства, как уважение, понимание и любовь, попросту не являются техническими проблемами...* (J.Weisenbaum). Общепризнано, что единственным субъектом мышления пока является человек, вооруженный всеми средствами, которыми он располагает на данном уровне своего развития. В число этих средств входят кибернетические машины, в которых материализованы результаты человеческого труда. Человек будет передавать машине лишь некоторые функции, выполняемые им в процессе мышления. В аргументации против возможности создания искусственного интеллекта (кибернетического разума) фактически наличествует указание на спектр действий мышления, которые неспособна выполнить никакая кибернетическая система. Человек есть не только природное существо, его основные характеристики продукт социального, а не чисто биологического развития. Следовательно, мышление человека не может развиваться в изоляции, для этого необходимо, чтобы человек был включен в общество. Во-первых, для возникновения мышления необходимо наличие языка, что возможно лишь в обществе. Во-вторых, с кибернетической точки зрения, *разумность* системы определяется количеством обрабатываемой в ней информации, поэтому система в информационно-бедной среде не может стать достаточно *разумной*. В направлении искусственного интеллекта (кибернетического разума) большинство исследователей под интеллектом понимают спектр способностей любой кибернетической системы к достижению одной из множества возможных целей во множестве разнообразных сред. Знания в К. дифференцируют от интеллекта так, что знания это полезная информация, накопленная и сохраненная кибернетической системой в процессе ее деятельности, а интеллект это определяющая способность кибернетической системы предсказывать состояния внешних сред в ассоциации с возможностью преобразовывать любое предсказание в адекватную реакцию, ведущую к заданной цели. Логическая машина отличается от мозга человека тем, что не может иметь сразу несколько взаимоисключающих программ деятельности. Мозг человека всегда их имеет, поэтому-то он и представляет собой *поле битвы у людей святых* или же *пепелище противоречий у людей более обычных*. Кибернетические устройства проявляют себя тем лучше, чем больше точности, алгоритмизации требует задание, их происхождение от цифровых компьютеров мстит за себя. Если ситуация чрезмерно усложняется, а количество новых факторов слишком возрастает, то робот теряется. Человек старается опереться на догадку (приближенное решение) и ему это иногда удается, а робот этого не умеет. Он должен все учесть точно и ясно, и если это невозможно, то он человеку проигрывает. Однако в опасной ситуации робот не *теряет головы*, так как он не ощущает страха и угроза гибели ему безразлична. В таких ситуациях самообладание может компенсировать нехватку интуиции. Робот пытается овладеть ситуацией до последнего мгновения, даже тогда, когда он видит, что проиграл. Хотя с точки зрения людей это иррационально, с точки зрения робота это всего лишь логично, ибо он так решил. Творческих способностей у роботов мало, так как они неотделимы от интуиции (Лем). Реализация действительно искусственного интеллекта будет возможна, если системы, основанные на знаниях, начнут осмысленно (в человеческом понимании) обрабатывать упаковки знаний, построенных для множества проблем, в принципе недоступных мышлению человека. При решении спектра проблем, возникающих в процессе построения эффективных форм и средств информационного обмена, возникает необходимость решения проблемы однозначной объективации знаний размещения фрагментов знаний в интегрированных упаковках, в которых они смогут перемещаться по каналам информационного обмена. Таковой упаковкой может быть фраза любого языка, книга, изображение, гипертекст и др. Для всех видов упаковок общим является то, что в любых условиях они должны поддерживать *семантическую безопасность* размещенных знаний, которые, кроме этого, должны быть декларативными и способными к выводу знаний повышенной общности из упакованных структур связей-отношений и понятий. Получатель и отправитель таких упаковок должны применять единую систему правил их объективации и восприятия формализм объективации знаний (естественным человеку формализмом является устная речь и письменность). В языковой форме возможно выражение не всякого знания, знание же, невыразимое в лингвистических конструкциях, не включается в процессы информационных обменов. При помощи естественного языка как одной из форм объективации знаний осуществляется человеческое общение, при этом одному и тому же фрагменту знания придаются различные вербальные и/или текстовые формы. В направлениях научного знания построены лингвистические редуценты (сужение языка естественного; при этом необходимо особо выделить язык математики как основу изложения систем знаний в естествознании; свой язык имеют философия, физика и др.). Применение лингвистических редуцент существенно повышает надежность процессов информационного обмена при одновременном снижении вероятности некорректного толкования передаваемой информации. Определяющими достоинствами лингвистических редуцент являются снятие смысловой многозначности естественного языка, привносящей семантический *шум* в каналы информационного обмена, и возможность построения стандартизированных упаковок фрагментов знаний. Обобщающий характер кибернетических идей и методов, задача обоснования таких исходных понятий К., как *информация*, *управление*, *обратная связь* и др., требуют выхода в более широкую, философскую область знаний. К., достижения которой имеют исключительное значение для исследования познавательных процессов, по своей сущности и содержанию фактически входит в современную теорию познания. Исследование методологического и гносеологического аспектов К. способствует решению философских проблем понимания простого и сложного, количества и качества, необходимости и случайности, возможности и действительности, прерывности и непрерывности, части и целого. Большой важности философский результат К. заключается в том, что ряд функций мышления, ранее считавшихся исключительной прерогативой живого мозга человека, оказался воспроизводимым в кибернетических устройствах. также: Виртуальная реальность, Виртуалистика, Искусственный интеллект, Тектология, Информация, Информационная война. С.В. Силков... смотреть

КИБЕРНЕТИКА

IКиберне́тика в медицине. Кибернетика — наука об общих законах управления в системах любой природы — биологической, технической, социальной. Основной о... смотреть

КИБЕРНЕТИКА

КИБЕРНЕТИКА [древнегреч. kybernetike (techne) - искусство управления] - отрасль знания, суть которого была сформулирована Винером как наука о связи, управлении и контроле в машинах и живых организмах... в книге Кибернетика, или Управление и связь в животном и машине (1948). В 1959 академик А.Н.Колмогоров писал: ...Сейчас уже поздно спорить о степени удачи Винера, когда он... в 1948 году выбрал для новой науки название кибернетика. Это название достаточно установилось и воспринимается как новый термин, мало связанный с греческой этимологией. Кибернетика занимается изучением систем любой природы, способных воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования. При этом кибернетика широко пользуется математическим методом и стремится к получению конкретных специальных результатов, позволяющих как анализировать такого рода системы (восстанавливать их устройство на основании опыта обращения с ними), так и синтезировать их (рассчитывать схемы систем, способных осуществлять заданные действия). Благодаря этому своему конкретному характеру кибернетика ни в какой мере не сводится к философскому обсуждению природы целесообразности в машинах и философскому анализу изучаемого ею круга явлений .... К. возникла на стыке математики, логики, семиотики, физиологии, биологии, социологии (до этого слабо связанных между собой), и с начала 1950-х (наряду с физикой, химией и биологией) стала оказывать существенное влияние на развитие мировой науки. Тектология (всеобщая организационная наука) Богданова (СССР, 1920-е) предшествовала К. у Винера (как минимум, в ее системной части; причем в своих работах Богданов применял лишь качественные методы). Для К. центральное значение имеет понятие информация, которая, по Винеру, является обозначением ... содержания, полученного из внешнего мира в процессе нашего приспособления к нему и приспособления к нему наших чувств.... Т.е. для Винера информация - это знание, имеющее одну ценностную меру по отношению к внешней среде (семантика) и другую ценностную меру по отношению к накопленным получателем знани- ям, целям познания (прагматика). При этом Винер интерпретировал любую информацию, вне зависимости от ее конкретного содержания и назначения, как выбор между двумя или более значениями, наделенными известными вероятностями (селективная концепция информации), что позволило начать исследования всех процессов при помощи разработанного им единого аппарата математической статистики (откуда берет начало идея о К. как общей теории управления и связи - первое основание К.). В К. связь - это процессы восприятия информации, ее хранения и передачи; управление - это процессы переработки воспринятой информации в сигналы, корректирующие функционирование кибернетической системы. Если система в состоянии самостоятельно воспринимать и применять информацию о результатах своего функционирования, то такая система обладает средствами обратной связи, причем переработку такого рода информации в сигналы, корректирующие функционирование системы, в К. называют контролем (регулированием). Осуществляющие связь, управление или контроль элементы кибернетической системы рассматриваются в К. исключительно как носители (преобразователи) информации. Определяющее значение имеет в К. понятие количество информации (количество выбора), введенное в явной форме основоположником теории информации К.Э.Шенноном. Количество информации (по Винеру - отрицательная энтропия) является, как и количество вещества, и количество энергии, одной из фундаментальных характеристик явлений природы. Второе основание К.,- интерпретация ее Винером как теории организации, теории борьбы с мировым Хаосом, с возрастанием энтропии. Колмогоров писал: ...С точки зрения кибернетики, конкретная материальная природа хранящих, передающих или перерабатывающих информацию элементов кибернетической системы, как и количество затрачиваемой на их работу энергии, являются подчиненными обстоятельствами. В процессе эволюции живых организмов возникли тончайшие механизмы хранения огромного количества информации в ничтожных объемах памяти (например, механизм наследственности, сохраняющий в одной клетке весь запас видовых признаков взрослого организма), а также механизмы, способные воспринимать и перерабатывать огромное количество новой информации с ничтожной затратой энергии (например, механизмы памяти и мышления в коре головного мозга) .... Функционирующий элемент кибернетической системы воспринимает информацию из внешней среды и применяет ее для выбора адекватного поведения. По Винеру, информация никогда не создается, она только передается и принимается, но при этом искажается шумом (помехами) на пути к объекту и внутри его; и для этого объ- екта может быть потеряна. Борьба с энтропией - это борьба с шумом, искажением информации (выступающим как бы семантической сущностью материи, которая при этом отождествляется с одновременно взаимодействующими веществом, энергией, информацией и знаниями, которые все находятся во взаимопереходах из одного в другой в соответствии с законами сохранения; причем в этих взаимодействиях вещество выступает носителем знания, а энергия выступает носителем информации). В К. постулирован принцип единства информации и управления (базисно важный для анализа сущности процессов, протекающих в самоорганизующихся технических и биосоциальных системах). Винер полагал, что процесс управления в таких системах является процессом переработки некоторым центральным устройством информации, получаемой от сенсор-рецепторов (источников первичной информации) и передачи ее туда, где она будет восприниматься как требование выполнения определенного действия. По завершении этого действия сенсор-рецепторы приводятся в готовность к передаче информации об изменении ситуации для исполнения следующего управленческого цикла. Главная роль в движении информации по системе и данном циклическом алгоритме управления принадлежит содержанию информации, передаваемой сенсор-рецепторами и центральным устройством. В связи с этим Колмогоров писал, что ... регулирующие механизмы второго порядка, которые накапливают информацию о результатах деятельности того или иного управляющего или регулирующего механизма первого порядка, способны использовать эту информацию для целесообразного изменения устройства и способа действий этого механизма первого порядка. Классическим образцом такого регулирования второго порядка является механизм выработки условных рефлексов. Над системой уже установившихся, выработанных рефлексов, т.е. связей между внешними раздражителями и реакциями организма, здесь господствует механизм выработки новых рефлексов. Входными сигналами для этого механизма являются подкрепления, получаемые в случае соответствия реакции нуждам организма, и торможения - в случае несоответствия.... Категория управление является базисной категорией К. Все другие категории субординированы (координированы) этой категорией. (Необходимо отметить, что существует подход к К. как к науке, изучающей способы создания, раскрытия строения и тождественного преобразования алгоритмов, описывающих процессы управления, протекающие в действительности.) Смысл категории управление в К. может быть раскрыт только через более общие категории структуры и функции, причинности и целесообразности и других невнутренних категорий К. В общем случае управление в кибернетиче- ской системе представляет собой цикл, совершаемый в контуре информационных обменов, состоящего из органа управления, каналов прямой и обратной связи. Управляющие воздействия представляют собой информацию управления (информацию о дальнейших надлежащих действиях объекта управления). Сведения о состоянии объекта и другие данные, поступающие от объекта органу управления, являются информацией состояния. Фактически управление - это совокупность процесса сбора, обработки, преобразования и передачи информации для осуществления целенаправленного функционирования любой кибернетической системы, которая должна осуществлять такие процессы и включать в себя исполнителя, источник-накопитель энергии, источник и приемник сигналов, систему передачи сигналов от источника к исполнителю. В предельном состоянии кибернетическая система полностью неопределенна с максимумом энтропии. В процессе функционирования системы, при потреблении ею энергии она потребляет информацию, уменьшающую разнообразие (неопределенность) и делающая поведение системы предсказуемым; энтропия уменьшается. Поступление информации позволяет управлять кибернетическими системами. Информация уменьшает разнообразие, а это - главный метод регулирования. Наличие в кибернетической системе помех в каналах информационных обменов (шума) ведет к увеличению разнообразия (энтропии), не увеличивая содержания информации. Если энтропия кибернетической системы возрастает, то система деградирует. Для противодействия деградации в кибернетическую систему за счет затрат энергии вводят негэнтропию (дополнительную информацию), т.к. естественным состоянием любой системы, обладающей способностью изменять свои стохастические характеристики, является рост энтропии (потеря информации). Условия осуществимости управления: 1) детерминированность (наличие причинно-следственных связей между компонентами) системы; 2) динамичность системы; 3) наличие управляющего параметра, воздействием на который возможно изменять направление трансформаций; 4) свойство усиления (способность системы претерпевать существенные пространственно-временные и/или энергетические трансформации под воздействием малых изменений управляющего параметра). Т.к. системы имеют протяженность в пространстве, то Г) воздействие управляющего параметра и трансформация системы разнесены во времени; 2) управляющий параметр и объект управления имеют различную физическую природу; 3) в подсистемах управления производится хранение, преобразование и передача управляющей информации. Содержание процесса управления характеризуется целью управления - гомеостазисом - уравновешивани- ем системы с трансформирующейся внешней средой, эффективным противодействием деструктивным воздействиям внешней среды для стабилизации жизненно важных параметров кибернетической системы. Эффективными считают кибернетические системы, которые для достижения одинаковых целей применяют минимальное количество информации. Все остальные системы аналогичного назначения - информационно-избыточны. Существует непосредственная связь между управлением и превращением энергии: по Г.Н.Алексееву, ...управление сводится к изменению потока энергии того или иного вида в различных системах... Активное воздействие человека на природу, т.е. труд, возможно рассматривать как управление энергетическими потоками внешней природы, причем источником энергии для этого служит сама природа, а трудовая деятельность совершается только тогда, когда энергии получается больше, чем затрачивается.... П.Г.Кузнецов утверждает, что такой механизм обмена возможен, если внутри человеческого организма имеется логическое управляющее устройство, которое работает по следующей программе: 1) запоминает физическую последовательность мышечных движений; 2) вычисляет полную величину затрат энергии на них; 3) запоминает последовательность результатов воздействия на природу; 4) вычисляет эффективность трудового процесса; 5) производит логическую операцию: принимает программу последовательности движений, если эффективность выше средней, и отвергает, если ниже.... Г.Н.Алексеев отмечает при этом, что ...по такой программе в принципе возможно построить... действие любого устройства, которое ведет активный поиск оптимального режима управления, описывается подобной программой и имеет конечной целью экономию расходования энергии. Следовательно, общественная деятельность людей в процессе производства есть неэквивалентный обмен энергией с природой, в результате которого должен увеличиться энергетический бюджет общества (или, соответственно, негэнтропия).... По Л.Бриллюэну, главный критерий кибернетических систем - их энергоэнтропийная эффективность, т.е. отношение увеличения негэнтропии (приобретенной информации) к увеличению энтропии во внешних системах (источниках энергии). На современном этапе развития К., в состоявшихся как научное направление работах по созданию искусственного интеллекта (кибернетического разума), обнаруживается спектр самых разнообразных взглядов на возможность построения рассуждающих систем, основанных на знаниях. Рассматривая возможность создания искусственного интеллекта (кибернетического разума) на основе кибернетического моделирования, необходимо отметить то, что в К. моделируются только функции мозга, поддающиеся логической обработке (т.е. связанные с получением, обработкой и выдачей информации). Все остальные самые разнообразные функции человеческого мозга остаются за рамками К. Например, многие понятия К. антропоморфны: на кибернетические системы перенесены (правомерно или нет) понятия цели, выбора, решения, условного рефлекса, памяти и др. Однако ... существуют такие функции человека, которые не могут выполняться компьютерами. И это объясняется не ограниченностью их возможностей, а тем, что такие чувства, как уважение, понимание и любовь, попросту не являются техническими проблемами... (J.Weisenbaum). Общепризнано, что единственным субъектом мышления пока является человек, вооруженный всеми средствами, которыми он располагает на данном уровне своего развития. В число этих средства входят кибернетические машины, в которых материализованы результаты человеческого труда. Человек будет передавать машине лишь некоторые функции, выполняемые им в процессе мышления. В аргументации против возможности создания искусственного интеллекта (кибернетического разума) фактически наличествует указание на спектр действий мышления, которые неспособна выполнить никакая кибернетическая система. Человек есть не только природное существо, его основные характеристики - продукт социального, а не чисто биологического развития. Следовательно, мышление человека не может развиваться в изоляции, для этого необходимо, чтобы человек был включен в общество. Во-первых, для возникновения мышления необходимо наличие языка, что возможно лишь в обществе. Во-вторых, с кибернетической точки зрения разумность системы определяется количеством обрабатываемой в ней информации, поэтому система в информационно-бедной среде не может стать достаточно разумной. В направлении искусственного интеллекта (кибернетического разума) большинство исследователей под интеллектом понимают спектр способностей любой кибернетической системы к достижению одной из множества возможных целей во множестве разнообразных сред. Знания в К. дифференцируют от интеллекта так, что знания - это полезная информация, накопленная и сохраненная кибернетической системой в процессе ее деятельности, а интеллект - это определяющая способность кибернетической системы предсказывать состояния внешних сред в ассоциации с возможностью преобразовывать любое предсказание в адекватную реакцию, ведущую к заданной цели. Логическая машина отличается от мозга человека тем, что не может иметь сразу несколько взаимоисключающих программ деятельности. Мозг человека всегда их имеет, поэтому-то он и представляет собой поле битвы у людей святых или же пепелище противоречий у лю- дей более обычных. Кибернетические устройства проявляют себя тем лучше, чем больше точности, алгоритмизации требует задание, их происхождение от цифровых компьютеров мстит за себя. Если ситуация чрезмерно усложняется, а количество новых факторов слишком возрастает, то робот теряется. Человек старается опереться на догадку (приближенное решение) и ему это иногда удается, а робот этого не умеет. Он должен все учесть точно и ясно, и если это невозможно, то он человеку проигрывает. Однако в опасной ситуации робот не теряет головы, так как он не ощущает страха и угроза гибели ему безразлична. В таких ситуациях самообладание может компенсировать нехватку интуиции. Робот пытается овладеть ситуацией до последнего мгновения, даже тогда, когда он видит, что проиграл. Хотя с точки зрения людей это иррационально, с точки зрения робота это всего лишь логично, ибо он так решил. Творческих способностей у роботов мало, так как они неотделимы от интуиции (Лем). Реализация действительно искусственного интеллекта будет возможна, если системы, основанные на знаниях, начнут осмысленно (в человеческом понимании) обрабатывать упаковки знаний, построенных для множества проблем, в принципе недоступных мышлению человека. При решении спектра проблем, возникающих в процессе построения эффективных форм и средств информационного обмена, возникает необходимость решения проблемы однозначной объективации знаний - размещения фрагментов знаний в интегрированных упаковках, в которых они смогут перемещаться по каналам информационного обмена, Таковой упаковкой может быть фраза любого языка, книга, изображение, гипертекст и др. Для всех видов упаковок общим является то, что в любых условиях они должны поддерживать семантическую безопасность размещенных знаний, которые, кроме этого, должны быть декларативными и способными к выводу знаний повышенной общности из упакованных структур связей-отношений и понятий. Получатель и отправитель таких упаковок должны применять единую систему правил их объективации и восприятия - формализм объективации знаний (естественным человеку формализмом является устная речь и письменность). В языковой форме возможно выражение не всякого знания, знание же, невыразимое в лингвистических конструкциях, не включается в процессы информационных обменов. При помощи естественного языка как одной из форм объективации знаний осуществляется человеческое общение, при этом одному и тому же фрагменту знания придаются различные вербальные и/или текстовые формы. В направлениях научного знания построены лингвистические редуценты (сужение языка естественного; при этом необходимо особо выделить язык мате- матики как основу изложения систем знаний в естествознании; свой язык имеют философия, физика и др.). Применение лингвистических редуцент существенно повышает надежность процессов информационного обмена при одновременном снижении вероятности некорректного толкования передаваемой информации. Определяющими достоинствами лингвистических редуцент являются снятие смысловой многозначности естественного языка, привносящей семантический шум в каналы информационного обмена, и возможность построения стандартизированных упаковок фрагментов знаний. Обобщающий характер кибернетических идей и методов, задача обоснования таких исходных понятий К., как информация, управление, обратная связь и др., требуют выхода в более широкую, философскую область знаний. К., достижения которой имеют исключительное значение для исследования познавательных процессов, по своей сущности и содержанию фактически входит в современную теорию познания. Исследование методологического и гносеологического аспектов К. способствует решению философских проблем понимания простого и сложного, количества и качества, необходимости и случайности, возможности и действительности, прерывности и непрерывности, части и целого. Большой важности философский результат К. заключается в том, что ряд функций мышления, ранее считавшихся исключительной прерогативой живого мозга человека, оказался воспроизводимым в кибернетических устройствах. (См. также Виртуальная реальность, Винер.) C.B. Силков<br><br><br>... смотреть

КИБЕРНЕТИКА

[древнегреч. kybernetike (techne) *искусство управления*] отрасль знания, суть которого была сформулирована Винером как наука *о связи, управлении и контроле в машинах и живых организмах...* в книге *Кибернетика, или Управление и связь в животном и машине* (1948). В 1959 академик А.Н.Колмогоров писал: *...Сейчас уже поздно спорить о степени удачи Винера, когда он... в 1948 году выбрал для новой науки название кибернетика. Это название достаточно установилось и воспринимается как новый термин, мало связанный с греческой этимологией. Кибернетика занимается изучением систем любой природы, способных воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования. При этом кибернетика широко пользуется математическим методом и стремится к получению конкретных специальных результатов, позволяющих как анализировать такого рода системы (восстанавливать их устройство на основании опыта обращения с ними), так и синтезировать их (рассчитывать схемы систем, способных осуществлять заданные действия). Благодаря этому своему конкретному характеру кибернетика ни в какой мере не сводится к философскому обсуждению природы целесообразности в машинах и философскому анализу изучаемого ею круга явлений ...*. К. возникла на стыке математики, логики, семиотики, физиологии, биологии, социологии (до этого слабо связанных между собой), и с начала 1950-х (наряду с физикой, химией и биологией) стала оказывать существенное влияние на развитие мировой науки. Тектология (всеобщая организационная наука) Богданова (СССР, 1920-е) предшествовала К. у Винера (как минимум, в ее системной части; причем в своих работах Богданов применял лишь качественные методы). Для К. центральное значение имеет понятие *информация*, которая, по Винеру, является обозначением *... содержания, полученного из внешнего мира в процессе нашего приспособления к нему и приспособления к нему наших чувств...*. Т.е. для Винера информация это знание, имеющее одну ценностную меру по отношению к внешней среде (семантика) и другую ценностную меру по отношению к накопленным получателем знаниям, целям познания (прагматика). При этом Винер интерпретировал любую информацию, вне зависимости от ее конкретного содержания и назначения, как выбор между двумя или более значениями, наделенными известными вероятностями (селективная концепция информации), что позволило начать исследования всех процессов при помощи разработанного им единого аппарата математической статистики (откуда берет начало идея о К. как общей теории управления и связи первое основание К.). В К. *связь* это процессы восприятия информации, ее хранения и передачи; *управление* это процессы переработки воспринятой информации в сигналы, корректирующие функционирование кибернетической системы. Если система в состоянии самостоятельно воспринимать и применять информацию о результатах своего функционирования, то такая система обладает средствами обратной связи, причем переработку такого рода информации в сигналы, корректирующие функционирование системы, в К. называют *контролем (регулированием)*. Осуществляющие связь, управление или контроль элементы кибернетической системы рассматриваются в К. исключительно как носители (преобразователи) информации. Определяющее значение имеет в К. понятие *количество информации* (количество выбора), введенное в явной форме основоположником теории информации К.Э.Шенноном. Количество информации (по Винеру отрицательная энтропия) является, как и количество вещества, и количество энергии, одной из фундаментальных характеристик явлений природы. Второе основание К.,интерпретация ее Винером как теории организации, теории борьбы с мировым Хаосом, с возрастанием энтропии. Колмогоров писал: *...С точки зрения кибернетики, конкретная материальная природа хранящих, передающих или перерабатывающих информацию элементов кибернетической системы, как и количество затрачиваемой на их работу энергии, являются подчиненными обстоятельствами. В процессе эволюции живых организмов возникли тончайшие механизмы хранения огромного количества информации в ничтожных объемах памяти (например, механизм наследственности, сохраняющий в одной клетке весь запас видовых признаков взрослого организма), а также механизмы, способные воспринимать и перерабатывать огромное количество новой информации с ничтожной затратой энергии (например, механизмы памяти и мышления в коре головного мозга) ...*. Функционирующий элемент кибернетической системы воспринимает информацию из внешней среды и применяет ее для выбора адекватного поведения. По Винеру, информация никогда не создается, она только передается и принимается, но при этом искажается *шумом* (помехами) на пути к объекту и внутри его; и для этого объ екта может быть потеряна. Борьба с энтропией это борьба с *шумом*, искажением информации (выступающим как бы *семантической сущностью* материи, которая при этом отождествляется с одновременно взаимодействующими веществом, энергией, информацией и знаниями, которые все находятся во взаимопереходах из одного в другой в соответствии с законами сохранения; причем в этих взаимодействиях вещество выступает *носителем* знания, а энергия выступает *носителем* информации). В К. постулирован принцип единства информации и управления (базисно важный для анализа сущности процессов, протекающих в самоорганизующихся технических и биосоциальных системах). Винер полагал, что процесс управления в таких системах является процессом переработки некоторым центральным устройством информации, получаемой от сенсор-рецепторов (источников первичной информации) и передачи ее туда, где она будет восприниматься как требование выполнения определенного действия. По завершении этого действия сенсор-рецепторы приводятся в готовность к передаче информации об изменении ситуации для исполнения следующего управленческого цикла. Главная роль в движении информации по системе и данном циклическом алгоритме управления принадлежит содержанию информации, передаваемой сенсор-рецепторами и центральным устройством. В связи с этим Колмогоров писал, что *... регулирующие механизмы второго порядка, которые накапливают информацию о результатах деятельности того или иного управляющего или регулирующего механизма первого порядка, способны использовать эту информацию для целесообразного изменения устройства и способа действий этого механизма первого порядка. Классическим образцом такого регулирования второго порядка является механизм выработки условных рефлексов. Над системой уже установившихся, выработанных рефлексов, т.е. связей между внешними раздражителями и реакциями организма, здесь господствует механизм выработки новых рефлексов. Входными сигналами для этого механизма являются *подкрепления*, получаемые в случае соответствия реакции нуждам организма, и *торможения* в случае несоответствия...*. Категория *управление* является базисной категорией К. Все другие категории субординированы (координированы) этой категорией. (Необходимо отметить, что существует подход к К. как к науке, изучающей способы создания, раскрытия строения и тождественного преобразования алгоритмов, описывающих процессы управления, протекающие в действительности.) Смысл категории *управление* в К. может быть раскрыт только через более общие категории структуры и функции, причинности и целесообразности и других *невнутренних* категорий К. В общем случае управление в кибернетической системе представляет собой цикл, совершаемый в контуре информационных обменов, состоящего из органа управления, каналов прямой и обратной связи. Управляющие воздействия представляют собой информацию управления (информацию о дальнейших надлежащих действиях объекта управления). Сведения о состоянии объекта и другие данные, поступающие от объекта органу управления, являются информацией состояния. Фактически управление это совокупность процесса сбора, обработки, преобразования и передачи информации для осуществления целенаправленного функционирования любой кибернетической системы, которая должна осуществлять такие процессы и включать в себя исполнителя, источник-накопитель энергии, источник и приемник сигналов, систему передачи сигналов от источника к исполнителю. В предельном состоянии кибернетическая система полностью неопределенна с максимумом энтропии. В процессе функционирования системы, при потреблении ею энергии она потребляет информацию, уменьшающую разнообразие (неопределенность) и делающая поведение системы предсказуемым; энтропия уменьшается. Поступление информации позволяет управлять кибернетическими системами. Информация уменьшает разнообразие, а это главный метод регулирования. Наличие в кибернетической системе помех в каналах информационных обменов (*шума*) ведет к увеличению разнообразия (энтропии), не увеличивая содержания информации. Если энтропия кибернетической системы возрастает, то система деградирует. Для противодействия деградации в кибернетическую систему за счет затрат энергии вводят негэнтропию (дополнительную информацию), т.к. естественным состоянием любой системы, обладающей способностью изменять свои стохастические характеристики, является рост энтропии (потеря информации). Условия осуществимости управления: 1) детерминированность (наличие причинно-следственных связей между компонентами) системы; 2) динамичность системы; 3) наличие управляющего параметра, воздействием на который возможно изменять направление трансформаций; 4) свойство усиления (способность системы претерпевать существенные пространственно-временные и/или энергетические трансформации под воздействием малых изменений управляющего параметра). Т.к. системы имеют протяженность в пространстве, то Г) воздействие управляющего параметра и трансформация системы разнесены во времени; 2) управляющий параметр и объект управления имеют различную физическую природу; 3) в подсистемах управления производится хранение, преобразование и передача управляющей информации. Содержание процесса управления характеризуется целью управления гомеостазисом уравновешиванием системы с трансформирующейся внешней средой, эффективным противодействием деструктивным воздействиям внешней среды для стабилизации жизненно важных параметров кибернетической системы. Эффективными считают кибернетические системы, которые для достижения одинаковых целей применяют минимальное количество информации. Все остальные системы аналогичного назначения информационно-избыточны. Существует непосредственная связь между управлением и превращением энергии: по Г.Н.Алексееву, *...управление сводится к изменению потока энергии того или иного вида в различных системах... Активное воздействие человека на природу, т.е. труд, возможно рассматривать как управление энергетическими потоками внешней природы, причем источником энергии для этого служит сама природа, а трудовая деятельность совершается только тогда, когда энергии получается больше, чем затрачивается...*. П.Г.Кузнецов утверждает, что *такой механизм обмена возможен, если внутри человеческого организма имеется логическое управляющее устройство, которое работает по следующей программе: 1) *запоминает* физическую последовательность мышечных движений; 2) *вычисляет* полную величину затрат энергии на них; 3) *запоминает* последовательность результатов воздействия на природу; 4) *вычисляет* эффективность трудового процесса; 5) производит *логическую* операцию: принимает программу последовательности движений, если эффективность выше средней, и отвергает, если ниже...*. Г.Н.Алексеев отмечает при этом, что *...по такой программе в принципе возможно построить... действие любого устройства, которое ведет активный поиск оптимального режима управления, описывается подобной программой и имеет конечной целью экономию расходования энергии. Следовательно, общественная деятельность людей в процессе производства есть неэквивалентный обмен энергией с природой, в результате которого должен увеличиться энергетический бюджет общества (или, соответственно, негэнтропия)...*. По Л.Бриллюэну, главный критерий кибернетических систем их энергоэнтропийная эффективность, т.е. отношение увеличения негэнтропии (приобретенной информации) к увеличению энтропии во внешних системах (источниках энергии). На современном этапе развития К., в состоявшихся как научное направление работах по созданию искусственного интеллекта (кибернетического разума), обнаруживается спектр самых разнообразных взглядов на возможность построения рассуждающих систем, основанных на знаниях. Рассматривая возможность создания искусственного интеллекта (кибернетического разума) на основе кибернетического моделирования, необходимо отметить то, что в К. моделируются только функции мозга, поддающиеся логической обработке (т.е. связанные с получением, обработкой и выдачей информации). Все остальные самые разнообразные функции человеческого мозга остаются за рамками К. Например, многие понятия К. антропоморфны: на кибернетические системы перенесены (правомерно или нет) понятия цели, выбора, решения, условного рефлекса, памяти и др. Однако *... существуют такие функции человека, которые не могут выполняться компьютерами. И это объясняется не ограниченностью их возможностей, а тем, что такие чувства, как уважение, понимание и любовь, попросту не являются техническими проблемами...* (J.Weisenbaum). Общепризнано, что единственным субъектом мышления пока является человек, вооруженный всеми средствами, которыми он располагает на данном уровне своего развития. В число этих средства входят кибернетические машины, в которых материализованы результаты человеческого труда. Человек будет передавать машине лишь некоторые функции, выполняемые им в процессе мышления. В аргументации против возможности создания искусственного интеллекта (кибернетического разума) фактически наличествует указание на спектр действий мышления, которые неспособна выполнить никакая кибернетическая система. Человек есть не только природное существо, его основные характеристики продукт социального, а не чисто биологического развития. Следовательно, мышление человека не может развиваться в изоляции, для этого необходимо, чтобы человек был включен в общество. Во-первых, для возникновения мышления необходимо наличие языка, что возможно лишь в обществе. Во-вторых, с кибернетической точки зрения *разумность* системы определяется количеством обрабатываемой в ней информации, поэтому система в информационно-бедной среде не может стать достаточно *разумной*. В направлении искусственного интеллекта (кибернетического разума) большинство исследователей под интеллектом понимают спектр способностей любой кибернетической системы к достижению одной из множества возможных целей во множестве разнообразных сред. Знания в К. дифференцируют от интеллекта так, что знания это полезная информация, накопленная и сохраненная кибернетической системой в процессе ее деятельности, а интеллект это определяющая способность кибернетической системы предсказывать состояния внешних сред в ассоциации с возможностью преобразовывать любое предсказание в адекватную реакцию, ведущую к заданной цели. Логическая машина отличается от мозга человека тем, что не может иметь сразу несколько взаимоисключающих программ деятельности. Мозг человека всегда их имеет, поэтому-то он и представляет собой *поле битвы у людей святых* или же *пепелище противоречий у людей более обычных*. Кибернетические устройства проявляют себя тем лучше, чем больше точности, алгоритмизации требует задание, их происхождение от цифровых компьютеров мстит за себя. Если ситуация чрезмерно усложняется, а количество новых факторов слишком возрастает, то робот теряется. Человек старается опереться на догадку (приближенное решение) и ему это иногда удается, а робот этого не умеет. Он должен все учесть точно и ясно, и если это невозможно, то он человеку проигрывает. Однако в опасной ситуации робот не *теряет головы*, так как он не ощущает страха и угроза гибели ему безразлична. В таких ситуациях самообладание может компенсировать нехватку интуиции. Робот пытается овладеть ситуацией до последнего мгновения, даже тогда, когда он видит, что проиграл. Хотя с точки зрения людей это иррационально, с точки зрения робота это всего лишь логично, ибо он так решил. Творческих способностей у роботов мало, так как они неотделимы от интуиции (Лем). Реализация действительно искусственного интеллекта будет возможна, если системы, основанные на знаниях, начнут осмысленно (в человеческом понимании) обрабатывать упаковки знаний, построенных для множества проблем, в принципе недоступных мышлению человека. При решении спектра проблем, возникающих в процессе построения эффективных форм и средств информационного обмена, возникает необходимость решения проблемы однозначной объективации знаний размещения фрагментов знаний в интегрированных упаковках, в которых они смогут перемещаться по каналам информационного обмена, Таковой упаковкой может быть фраза любого языка, книга, изображение, гипертекст и др. Для всех видов упаковок общим является то, что в любых условиях они должны поддерживать *семантическую безопасность* размещенных знаний, которые, кроме этого, должны быть декларативными и способными к выводу знаний повышенной общности из упакованных структур связей-отношений и понятий. Получатель и отправитель таких упаковок должны применять единую систему правил их объективации и восприятия формализм объективации знаний (естественным человеку формализмом является устная речь и письменность). В языковой форме возможно выражение не всякого знания, знание же, невыразимое в лингвистических конструкциях, не включается в процессы информационных обменов. При помощи естественного языка как одной из форм объективации знаний осуществляется человеческое общение, при этом одному и тому же фрагменту знания придаются различные вербальные и/или текстовые формы. В направлениях научного знания построены лингвистические редуценты (сужение языка естественного; при этом необходимо особо выделить язык мате матики как основу изложения систем знаний в естествознании; свой язык имеют философия, физика и др.). Применение лингвистических редуцент существенно повышает надежность процессов информационного обмена при одновременном снижении вероятности некорректного толкования передаваемой информации. Определяющими достоинствами лингвистических редуцент являются снятие смысловой многозначности естественного языка, привносящей семантический *шум* в каналы информационного обмена, и возможность построения стандартизированных упаковок фрагментов знаний. Обобщающий характер кибернетических идей и методов, задача обоснования таких исходных понятий К., как *информация*, *управление*, *обратная связь* и др., требуют выхода в более широкую, философскую область знаний. К., достижения которой имеют исключительное значение для исследования познавательных процессов, по своей сущности и содержанию фактически входит в современную теорию познания. Исследование методологического и гносеологического аспектов К. способствует решению философских проблем понимания простого и сложного, количества и качества, необходимости и случайности, возможности и действительности, прерывности и непрерывности, части и целого. Большой важности философский результат К. заключается в том, что ряд функций мышления, ранее считавшихся исключительной прерогативой живого мозга человека, оказался воспроизводимым в кибернетических устройствах. (См. также Виртуальная реальность, Винер.)... смотреть

КИБЕРНЕТИКА

(греч. искусство управлять) междисциплинарное направление в науке, возникшее во второй половине XX столетия для обозначения и описания процессов управления в сложных системах: социальных, биологических и технических. Первоначально термин был использован древнегреческим философом Платоном для обозначения искусства кормчего управлять кораблем на море. Спустя почти две с половиной тысячи лет французский Ученый А. М. Ампер (*Опыт философии наук*, 1834 г.) предложил классификацию наук, в которой наука о текущей политике и об управлении человеческим обществом была названа К. Последнее по времени возрождение термина связано с выходом в свет работы американского ученого Н. Винера *Кибернетика, или Управление и связь в животном и машине* (1948 г.). Винер опирался на результаты теории автоматического регулирования (ТАР) в системах с обратной связью, которая была разработана в XIX XX вв. в трудах Максвелла, Вышнеградского, Ляпунова, однако придал этой теории философско-методологическое звучание, с того времени К. стали рассматривать как самостоятельную науку, а Винера называть *отцом кибернетики*. Им же класс биологических и технических кибернетических систем был дополнен системами социальными: в 1954 году вышла в свет работа Винера *Кибернетика и общество*, где идея Ампера обрела иной и более широкий контекст. Ввиду собирательного характера К. как междисциплинарного направления ниже приводятся описательные определения некоторых основных понятий. Управление процесс взаимодействия компонентов системы, который осуществляется избирательно и направлен на получение фокусированного результата (*заданного состояния*). Результат, в силу его физического несуществования до момента достижения, задается функционально, а процесс его достижения обеспечивается получением, переработкой и использованием информации. Примеры функционально-заданного результата: цель человека, ожидание животного, норма функционирования для технического устройства. Предполагается, что результат задан действием какой-либо закономерности, относящейся к соответствующей предметной области, поэтому поведение систем управления называют телеономическим (т. е. подчиненным действию цели закономерности). Если результат не изменяется во времени, имеет место частный случай управления регулирование, а система управления называется гомеостатической. Информация. Строгого общепринятого определения понятие информации не имеет. Сохраняет этимологическую связь с понятиями *сведения*, *осведомление*. В специально-кибернетической литературе понимается как разнообразие или ограниченное разнообразие; как мера устраняемой при получении информации неопределенности (энтропии) на стороне приемника, как мера вероятности события в математической теории связи. Разнообразие регулятора это информационное разнообразие возможных состояний последнего, для эффективного управления оно должно быть больше, нежели разнообразие принимаемых во внимание внешних и внутренних возмущений в системе управления. Поскольку процесс управления направлен на объект управления, но протекает не в нем, а в системе управления в пределах общности каналов связи, кода и алфавита, в философской литературе информация рассматривается как высшая, присущая органической природе, человеку и техническим кибернетическим системам форма отражения, или функциональное отражение. С этой т. зр. обобщенно можно сказать: содержанием информации является отражение структуры и свойств среды, в которой протекает поведение или деятельность управляемые посредством информации. Обратная связь одно из центральных понятий К., обозначающее цикличность, замыкание несущего информацию сигнала с выхода на вход системы управления. Посредством обратной связи осуществляется приведение объекта управления в соответствие с функционально-заданным результатом управления. Отрицательная обратная связь уменьшает действие возмущающих воздействий, положительная усиливает, что может приводить к разрушению системы управления. Вопросы устойчивости систем с положительной и отрицательной обратными связями изучаются в ТАР. Автомат устройство, реализующее некоторую законченную последовательность действий (операций) в автономном, т. е. осуществляющемся без участия человека, режиме. Разработанная в 50-е гг. Дж. фон Нейманом теория автоматов получила мощное развитие в математическом моделировании, вплоть до разработки математических моделей самовоспроизводящихся автоматов, таких, которые в процессе функционирования могут строить собственные копии. Память в К. способность сохранять информацию во времени с помощью соответствующих технических устройств с целью ее последующей переработки или использования. В обиходе специалистов по К. термин используется также для обозначения самих запоминающих устройств. В начале 50-х гг. вышли в свет работы К. Шеннона по математической теории связи, Дж. фон Неймана по теории автоматов, включая самовоспроизводящиеся, а затем достаточно популярно излагающие проблемы К. труды У.Р. Эшби, А. Тьюринга и др. К. стала рассматриваться многими учеными в качестве новой философско-мировоззренческой доктрины, чему содействовали два обстоятельства. Первое связано с заимствованием из ТАР и развитием родоначальниками К. строгих и достаточно универсальных математических методов моделирования и анализа сложных систем. Математическая К. предстала основой всех других ее разделов, это был период триумфа установок математического естествознания. Мощное развитие получил формальный аппарат К. классическая и неклассические логики, начиная с логики исчисления предикатов, *алгебры Буля*. Следует подчеркнуть, что английский ученый Дж. Буль разработал в конце XIX в. логико-математический аппарат, который, как он полагал, позволяет моделировать любые операции человеческого мышления. Позднее этот аппарат стал основой программирования электронных вычислительных машин (ЭВМ) дискретного типа. Второе обстоятельство связано с онтологизацией Винером феномена информации. В К. теория информации рассматривается как один из ключевым ее разделов: управление осуществляется посредством сигналов, несущих информацию, правда, в закодированном вид Код есть способ (форма) представления информации в *понятном* для системы управления виде, перевода ее из синтаксически-нейтральной в семантически-понятную и прагматически-полезную для системы С этой т. зр. управление может быть определено как процесс получения, переработки, хранения, использования и последующей передачи информации. Его и поставил Винер в один ряд с веществом и энергией в качестве третьего компонента реальности, заявив: *Информация есть информация, а не материя и не энергия. Тот материализм, который не признает этого, не может быть жизнеспособным в настоящее время* (Винер Н. Кибернетика, или Управление и связь в животном и машине. Изд. 2. M., 1983, с 208). Т о., начиная с 50-х гг. теоретическая К. стала рассматриваться специалистами с позиции неограниченных возможностей моделирования сколь угодно сложных процессов управления, включая мышление человека. Ограничения накладываются в процессе технической реализации и, очевидно, могут быть преодолены впоследствии. Этому разделению примерно соответствует принятое в это же время в США разделение: термину К. соответствует General system theory ОТС, общая теория систем (примерно соответствует математической, теоретической К.) и computer science компьютерная наука (прикладная К.). В России (ранее в СССР) теоретическая (математическая) К. разрабатывалась з трудах ученых А. И. Берга, В. М. Глушкова (автора и организатора всеобщего внедрения автоматизированных систем управления АСУ), А. Н. Колмогорова и других в качестве направления, близкого, но не совпадающего с ОТС. До настоящего времени ОТС мыслится рядом ученых как предельно общая формальная теория анализа и синтеза сложных систем произвольной природы, из второй различные разделы К. выводил бы дедуктивно, в качестве частных случаев ОТС. Однако сегодня эта грандиозная программа далека от своего решения и едва ли может быть завершена в будущем, поскольку противоречит собственному основанию концепции разнообразия. Качественное разнообразие регулятора должно превышать разнообразие возмущающих воздействий (условие управляемости К. системы), что несовместимо с требованием открытия универсального закона поведения систем любой сложности и произвольного назначения. Первоначальная отрицательная реакция некоторых отечественных ученых на появление К. была обусловлена причинами внетеоретического (идеологического) характера, негативной оценкой философско-методологической ориентации К. и теории информации. Приведенное выше высказывание Винера об информации и философском материализме, равно как и установка ряда математиков на редукцию мышления к вычислению вызвали одиозную оценку К. в отечественной научно-философской литературе в качестве *буржуазной лженауки*. Этим, в частности, вызвано отставание современной России в области компьютерных технологий и достижений информационного общества. 60-е гг. стали периодом массового распространения в сознании западного человека умонастроения, которое уместно назвать кибернетическим оптимизмом. С разработкой первых программ по машинному переводу, распознаванию образов, доказательству теорем, шахматной игре, эвристических алгоритмов переработки информации и производственных роботов казалось, что техническая реализация грандиозных математических проектов типа самовоспроизводящихся автоматов Неймана и Тьюринга дело недалекого будущего. В настоящее время ситуация изменилась в сторону значительного снижения ожидаемых успехов. И дело здесь не в технических трудностях, к которым стремятся свести проблему математики и специалисты по теоретической К., разграничившие области потенциальной осуществимости и технической реализуемости. Дело скорее в разрыве между ожиданиями, основанными на установках классического европейского рационализма, и реальностью сегодняшнего дня, требующей корректировки или смены этих установок. В основе кибернетического оптимизма лежит ряд допущений, включая: а) онтологическое разумное поведение может быть представлено в терминах множества четко определенных независимых элементов, б) гносеологическое люди действуют согласно эвристическим правилам, неосознанно выполняя некоторую последовательность операций, которые могут быть формализованы и воспроизведены на ЭВМ, в) психотехническое проявления духа и души суть эпифеномены переживания семантических информационных процессов, которые вполне кодируемы и воспроизводимы, г) биологоэволюционное мозг человека есть управляющее устройство, большая вычислительная машина по переработке информации. Благодаря длительности эволюции мозг получил ряд преимуществ, таких, как континуальность, ассоциативность, системность мышления, но и они могут быть технически реализованы. Полагали, что теоретическое решение этой проблемы дал Нейман, математически описав модели нейронных и гуморальных цепей, а техническое решение не составит проблем, ибо начиная с Лейбница и в соответствии с установками научной рациональности считалось, что мышление возможно свести к вычислению, а вычисление к дискретной последовательности операций, алгоритму, который может быть исчерпывающим. Философский и внутринаучный критический анализ рассмотренных установок в 80 90-е гг. привел к существенному снижению оптимистических ожиданий. Уже в одной из теорем (или осторожных гипотез Неймана) утверждается; существует порог сложности, выше которого любая модель сложной системы управления заведомо сложнее самой моделируемой системы. Тем самым построение подобной модели становится бессмысленным. Более серьезные возражения в конце 70-х гг. систематизированы сначала философами (например. X. Дрейфусом, США), а затем и специалистами в области моделирования устройств искусственного интеллекта (ИИ) (например, Д. Вейценбаумом, США). Наряду с внутринаучными аргументами (теорема Геделя о неполноте формальных систем, уже упомянутая теорема Неймана о пороге сложности и др.) они выдвинули и ряд внешних но отношению к науке аргументов, направленных на критику приведенных выше допущений кибернетического оптимизма, анализ континуальности коммуникаций (общения), мышления и деятельности человека. Неформализуемость контекстуальных и ассоциативных аспектов поведения определяется также психологией и этикой, идеологией и политикой и т. п. И хотя, с экспериментально-математической т. зр., до настоящего времени не удается провести четкой грани между естественным и искусственным интеллектами, между информацией в техническом смысле и подлинно человеческим знанием, недавние попытки универсализации К. сегодня все менее воспринимаются всерьез. По сути дела, 50 лет тому назад родоначальниками К. был поставлен метафизический вопрос об автономности К. техники (будущей эре ИИ и автоматов-андроидов, способных к самовоспроизведению, и т. п.). Обсуждались проблемы возможного нарушения автономии человеческой воли, детерминированности человеческой жизни искусственным разумом. Поиски ответа на этот вопрос стимулировали продуктивные сдвиги в понимании научной рациональности, сферы и границ экспериментально-математического естествознания, возможностей информационно-кибернетических моделей. Еще в 1969 г. Г. Саймон в работе *Науки об искусственном* показал, как кибернетическое конструирование и логические разработки в области кибернетических дисциплин (науки об управлении, информационные науки, исследования по ИИ) накладывают ограничения на классический образ рациональности, вводя ее в рамки *ограниченной рациональности*. Этим объясняется, почему во многих работах последнего десятилетия К. рассматривают в качестве раздела технического знания, а философские вопросы К. как частный случай проблем философии техники. По-видимому, это достаточно корректно и в историческом, и в логическом смыслах. Исторически техника прошла в своем развитии три этапа: от имитации естественных форм через проектирование органов человеческого тела (освоение вещественно-энергетических процессов.) к овладению информационными процессами и кибернетическому конструированию моделей мышления и психики. Т. о , К. символизирует прорыв технического действия человека, технического творчества в область целостности вещественно-энергетически-информационного взаимодействия между человеком и природой. В этом прорыве К. в обозримом будущем может принадлежать существенная роль: подготовить более фундаментальную по глубине встречу сознания изобретателя с миром *предданных решений технических проблем* (Ф Дессауэр), с потенциальным, неактуализированным бытием. В социальном аспекте достижения К., моделируя сферу информационных процессов и управления посредством информации, создают технико-технологическую основу построения информационного общества. Учитывая значимость К., компьютерной техники, телекоммуникационных средств связи для получения преимуществ в современном мировом сообществе, следует ожидать новых всплесков кибернетического оптимизма. Можно предположить, однако, что в целом это не изменит сложившийся на сегодня собирательный смысл понятия К. для обозначения определенной области технической деятельности человека. В. И. Кашлерский... смотреть

КИБЕРНЕТИКА

Винер по праву назван отцом кибернетики, — пишет в своей „Кибернетической смеси“ В.Д. Пекелис. — Его книга „Кибернетика“ появилась в 1948 году и потрясла многих неожиданностью выводов, оказала ошеломляющее влияние на общественное мнение. Ее появление можно уподобить исподволь подготовленному взрыву. В истории кибернетики, как и в любой другой науке, два периода: накопление материала и оформление его в новую науку… Здесь стоит упомянуть посвященные теории регулирования работы инженера А. Стодолы, опубликованные в конце прошлого века в одном из швейцарских журналов. В них рассматривался принцип управления с помощью обратной связи. Своеобразие истории вычислительной техники знаменательно тем, что первые счетные машины сразу же открыли перед человеком возможность механизации умственной работы. Здесь нельзя обойти вниманием „Математическое исследование логики“ Джорджа Буля. Оно положило начало разработке алгебры логики, которой широко пользуется теперь кибернетика. Когда в теории вероятностей возник новый раздел — теория информации, универсальность новой теории, хоть и не сразу, стала ясна всем. Обнаружилось, например, соответствие между количеством информации и мерой перехода различных форм энергии в тепловую — энтропией. Впервые на это указал в 1929 году известный физик Л. Сциллард. Впоследствии теория информации стала одной из важных основ в кибернетике. В XIX веке заметны достижения и в физиологии высшей нервной деятельности. Особенно в исследовании процессов обучения животных. В 30-х годах нашего столетия явлением стала теория физиологической активности Беркштейна, еще позже принцип функциональной системы Анохина». Вместе с прогрессом происходит и сближение технических средств, используемых и в физиологии и в автоматике. Такое сближение сопровождается взаимным обменом принципами построения структурных схем, идеями моделирования, методами анализа и синтеза систем. Подобную тенденцию одним из первых уловил русский философ Александр Александрович Богданов. «Мой исходный пункт, — писал ученый, — заключается в том, что структурные отношения могут быть обобщены до такой формальной чистоты схем, как в математике и отношениях величин, и на такой основе организационные задачи могут решаться способами, аналогичными математическим». Таким образом, Богданов предвосхитил появление общей теории систем — одной из ключевых концепций кибернетики. Русский ученый сумел обосновать и принцип обратной связи, назвав его «механизмом двойного взаимного регулирования». Позднее, в 1936 году английский математик А. Тьюринг опубликовал работу, описывающую абстрактную вычислительную машину. Некоторые положения его труда во многом предвосхитили различные проблемы кибернетики. Однако решающее слово в рождении новой науки сказал крупный американский математик Винер. Норберт Винер (1894–1964) родился в городе Колумбия штата Миссури. Читать он научился с четырех лет, а в шесть уже читал Дарвина и Данте. В девять лет он поступил в среднюю школу, в которой начинали учиться дети с 15–16 лет, закончив предварительно восьмилетку. Среднюю школу он окончил, когда ему исполнилось одиннадцать. Сразу же мальчик поступил в высшее учебное заведение, Тафте-колледж. После окончания его, в возрасте 14 лет, получил степень бакалавра искусств. Затем учился в Гарвардском и Корнельском университетах, в 17 лет в Гарварде стал магистром искусств, в 18 — доктором философии по специальности «математическая логика». Гарвардский университет выделил Винеру стипендию для учебы в Кембриджском (Англия) и Геттингенском (Германия) университетах. Перед Первой мировой войной, весной 1914 года Винер переехал в Геттинген, где в университете учился у Э.Ландау и великого Д.Гильберта. В начале войны Винер вернулся в США, год провел в Кембридже, но в сложившихся условиях научных результатов добиться не мог. В Колумбийском университете он стал заниматься топологией, но начатое до конца не довел. В 1915–1916 учебном году Винер в должности ассистента преподавал математику в Гарвардском университете. Следующий учебный год Винер работал по найму в университете штата Мэн. После вступления США в войну он работал на заводе «Дженерал электрик», откуда перешел в редакцию Американской энциклопедии в Олбани. Затем Норберт какое-то время участвовал в составлении таблиц артиллерийских стрельб на полигоне, где его даже зачислили в армию, но вскоре из-за близорукости уволили. Потом он перебивался статьями в газеты, написал две работы по алгебре, вслед за опубликованием которых получил рекомендацию профессора математики В.Ф. Осгуда и в 1919 году поступил на должность ассистента кафедры математики Массачусетсского технологического института (МТИ). Так началась его служба в этом институте, продолжавшаяся всю жизнь. Здесь Винер ознакомился с содержанием статистической механики У. Гиббса. Ему удалось связать основные положения ее с лебеговским интегрированием при изучении броуновского движения и написать несколько статей. Такой же подход оказался возможным в установлении сущности дробового эффекта в связи с прохождением электрического тока по проводам или через электронные лампы. Возвратившись в США, Винер усиленно занимается наукой. В 1920–1925 годах он решает физические и технические задачи с помощью абстрактной математики и находит новые закономерности в теории броуновского движения, теории потенциала, гармоническом анализе. В 1922, 1924— и 1925 годах Винер побывал в Европе у знакомых и родственников семьи. В 1925 году он выступил в Геттингене с сообщением о своих работах по обобщенному гармоническому анализу, заинтересовавшим Гильберта, Куранта и Борна. Впоследствии Винер понял, что его результаты в некоторой степени связаны с развивавшейся в то время квантовой теорией. Тогда же Винер познакомился с одним из конструкторов вычислительных машин — В. Бушем и высказал пришедшую ему однажды в голову идею нового гармонического анализатора. Буш претворил ее в жизнь. Продвижение Винера по службе шло медленно. Он пытался получить приличное место в других странах, но у него не вышло. Однако пришла пора, наконец, и везения. На заседании Американского математического общества Винер встретился с Я.Д. Тамаркиным, геттингенским знакомым, всегда высоко отзывавшимся о его работах. Такую же поддержку оказывал ему неоднократно приезжавший в США Харди. И это повлияло на положение Винера: благодаря Тамаркину и Харди он стал известен в Америке. Особо значимой оказалась совместная деятельность Винера с приехавшим из Германии в Гарвардский университет Э. Хопфом — в результате чего в науку вошло «уравнение Винера — Хопфа», описывающее радиационные равновесия звезд, а также относящееся к другим задачам, в которых ведется речь о двух различных режимах, отделенных границей. В 1929 году в шведском журнале «Акта математика» и американском «Анналы математики» вышли две большие итоговые статьи Винера по обобщенному гармоническому анализу. С 1932 года Винер — профессор МТИ. В Гарварде он познакомился с физиологом А. Розенблютом и стал посещать его методологический семинар, объединявший представителей различных наук. Этот семинар сыграл важную роль в формировании у Винера идей кибернетики. После отъезда Розенблюта в Мехико заседания семинара проводились иногда в Мехико, иногда в МТИ. В 1934 году Винер получил приглашение из университета Цинхуа (в Пекине) прочитать курс лекций по математике и электротехнике. Год посещения Китая он считал годом полного своего становления как ученого. Во время войны Винер почти целиком посвятил свое творчество военным задачам. Он исследует задачу движения самолета при зенитном обстреле. Обдумывание и экспериментирование убедили Винера в том, что система управления огнем зенитной артиллерии должна быть системой с обратной связью; что обратная связь играет существенную роль и в человеческом организме. Все большую роль начинают играть прогнозирующие процессы, осуществляя которые нельзя полагаться лишь на человеческое сознание. Существовавшие в ту пору вычислительные машины необходимым быстродействием не обладали. Это заставило Винера сформулировать ряд требований к таким машинам. По сути дела, им были предсказаны пути, по которым в дальнейшем пошла электронно-вычислительная техника. Вычислительные устройства, по его мнению, «должны состоять из электронных ламп, а не из зубчатых передач или электромеханических реле. Это необходимо, чтобы обеспечить достаточное быстродействие». Следующее требование состояло в том, что в вычислительных устройствах «должна использоваться более экономичная двоичная, а не десятичная система счисления». Машина, полагал Винер, должна сама корректировать свои действия, в ней необходимо выработать способность к самообучению. Для этого ее нужно снабдить блоком памяти, где откладывались бы управляющие сигналы, а также те сведения, которые машина получит в процессе работы. Если ранее машина была лишь исполнительным органом, всецело зависящим от воли человека, то ныне она становилась думающей и приобретала определенную долю самостоятельности. В 1943 году вышла статья Винера, Розенблюта, Байглоу «Поведение, целенаправленность и телеология», представляющая собой набросок кибернетического метода. В 1948 году в нью-йоркском издательстве «Джон Уили энд Санз» и парижском «Херманн эт Ци» выходит книга Винера «Кибернетика». «Основной тезис книги, — пишет Г.Н. Поваров в предисловии к „Кибернетике“, — подобие процессов управления и связи в машинах, живых организмах и обществах, будь то общества животных (муравейник) или человеческие. Процессы эти суть, прежде всего, процессы передачи, хранения и переработки информации, т. е. различных сигналов, сообщений, сведений. Любой сигнал, любую информацию, независимо от ее конкретного содержания и назначения, можно рассматривать как некоторый выбор между двумя или более значениями, наделенными известными вероятностями (селективная концепция информации), и это позволяет подойти ко всем процессам с единой меркой, с единым статистическим аппаратом. Отсюда мысль об общей теории управления и связи — кибернетике. Количество информации — количество выбора — отождествляется Винером с отрицательной энтропией и становится, подобно количеству вещества или энергии, одной из фундаментальных характеристик явлений природы. Таков второй краеугольный камень кибернетического здания. Отсюда толкование кибернетики как теории организации, как теории борьбы с мировым хаосом, с роковым возрастанием энтропии. Действующий объект поглощает информацию из внешней среды и использует ее для выбора правильного поведения. Информация никогда не создается, она только передается и принимается, но при этом может утрачиваться, исчезать. Она искажается помехами, „шумом“, на пути к объекту я внутри его и теряется для него». Основоположником современной теории управления сам Винер считал Дж. К. Максвелла, и это совершенно справедливо. Теория автоматического регулирования была в основном сформулирована Дж. Максвеллом, И. Вышнеградским, А. Ляпуновым и А. Стодолой. В чем же заслуга Н. Винера? Может быть, его книга просто представляет собой компиляцию известных сведений, собирает воедино известный, но разрозненный материал? Основная заслуга Винера в том, что он впервые понял принципиальное значение информации в процессах управления. Говоря об управлении и связи в живых организмах и машинах, он видел главное не просто в словах «управление» и «связь», а в их сочетании. Точно так же, как в теории относительности важен не сам факт конечности скорости взаимодействия, а сочетание этого факта с понятием одновременности событий, протекающих в различных точках пространства. Кибернетика — наука об информационном управлении, и Винера с полным правом можно считать творцом этой науки. «С выходом книги в свет кончился первый, инкубационный период истории кибернетики, — пишет Г.Н. Поваров, — и начался второй, крайне бурный — период распространения и утверждения. Дискуссии потрясли ученый мир. Кибернетика нашла горячих защитников и столь же горячих противников… …Одни усматривали в кибернетике сплошной философский выверт и „холодную войну“ против учения Павлова. Другие, энтузиасты, относили на ее счет все успехи автоматики и вычислительной техники и соглашались видеть уже в тогдашних „электронных мозгах“ подлинных разумных существ. Третьи, не возражая против сути проекта, сомневались, однако, в успехе предпринятого синтеза и сводили кибернетику к простым призывам. …Вокруг всего этого бушевали страсти. Однако кибернетика выиграла, в конце концов, сражение и получила право гражданства в древней семье наук. Период утверждения занял приблизительно десятилетие. Постепенно решительное отрицание кибернетики сменилось поисками в ней „рационального зерна“ и признанием ее полезности и неизбежности. К 1958 году уже почти никто не выступал совсем против. Винеровский призыв к синтезу раздался в чрезвычайно благоприятный момент, обстоятельства работали на кибернетику, несмотря на ее несовершенства и преувеличения». В 1959 году академик А.Н. Колмогоров писал: «Сейчас уже поздно спорить о степени удачи Винера, когда он в своей известной книге в 1948 году выбрал для новой науки название „кибернетика“. Это название достаточно установилось и воспринимается как новый термин, мало связанный со своей греческой этимологией. Кибернетика занимается изучением систем любой природы, способных воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования. При этом кибернетика широко пользуется математическим методом и стремится к получению конкретных специальных результатов, позволяющих как анализировать такого рода системы (восстанавливать их устройство на основании опыта обращения с ними), так и синтезировать их (рассчитывать схемы систем, способных осуществлять заданные действия). Благодаря этому своему конкретному характеру кибернетика ни в какой мере не сводится к философскому обсуждению природы „целесообразности“ в машинах и философскому анализу изучаемого ею круга явлений».... смотреть

КИБЕРНЕТИКА

в химической технологии (от греч. kybernetike - искусство управления), раздел науки о связях процессов и явлений в химико-технол. системах и управлении ими. Предмет исследования - хим. объекты и их совокупности, хим. произ-ва, стратегия изучения - системный анализ, научный метод мат. моделирование, ср-ва реализации ЭВМ. К. позволяет получать конкретные количеств, результаты, анализировать и синтезировать (разрабатывать) <i> химико-технологические системы</i> (ХТС) с заданными св-вами, прогнозировать их оптим. функционирование (см. <i>Оптимизация</i>)<i></i> и создавать алгоритмы управления процессами. ХТС включает: собственно хим. процессы, аппарат или группу аппаратов для проведения этих процессов, ср-ва контроля и управления процессами и связи между ними. Совокупность этих элементов и связи между ними образуют структуру ХТС. Функционирование ее может оцениваться совокупностью показателей (количественных, качественных, материальных, энергетических, экономических, экологических и т. д.), каждый из к-рых существенно зависит от организации данной ХТС, состава входящих в нее процессов, технол. совершенства отдельных стадий и др. Взаимод. системы с окружающей средой в общем случае описывается двумя группами переменных: входными и выходными. Последние определяют показатели работы ХТС и отражают ее р-цию на воздействия окружающей среды, к-рые проявляются в изменениях входных переменных, характеризующих, напр., кол-во перерабатываемого сырья, его состав, термодинамич. св-ва. Любые незапрограммированные изменения входных переменных, вызывающие изменения показателей функционирования системы, рассматриваются как возмущения, чаще всего нежелательные. Компенсация их и поддержание параметров режима работы ХТС в заданных пределах осуществляются целенаправленным изменением особой части входных переменных управляющих воздействий. Стратегия анализа и построение математических моделей процессов и систем. Для изучения существующих и разрабатываемых ХТС применяют стратегию системного анализа, в соответствии с к-рой производится декомпозиция (расчленение) исходной сложной системы на ряд подсистем меньшей сложности т наз технол.операторов При этом каждая из подсистем может рассматриваться как самостоят, система, а окружающая ее среда включает остальные подсистемы. Количеств, связь выходных переменных с входными, возмущающими и управляющими воздействиями представляет собой т. наз. функциональный оператор, или мат. модель ХТС, и отображается системой ур-ний, наз. мат. описанием изучаемого объекта. Осн. прием его построения-т. наз. блочный принцип, согласно к-рому после установления набора элементарных процессов каждый из них исследуется отдельно (по блокам) в условиях, максимально приближенных к существующему или предполагаемому режиму эксплуатации объекта моделирования. В результате каждому элементарному технол. оператору ставится в соответствие элементарный функциональный оператор, описывающий его св-ва. Согласно стратегии системного анализа, в К. вначале анализируется гидродинамич. часть общего технол. оператора - основа будущей модели. Эта часть оператора характеризует поведение т. наз. холодного объекта (напр., хим. реактора), т. е. объекта, в к-ром отсутствуют физ.-хим. превращения. Вначале анализируется структура потоков в объекте и ее влияние на процессы переноса и перемешивания компонентов потока. Изучаемые на данном этапе закономерности, как правило, линейны и описываются линейными дифференц. ур-ниями. Результаты анализа представляются обычно в виде системы дифференц. ур-ний с найденными значениями их параметров. Иногда для описания процессов не удается использовать мат. аппарат детерминированных (изменяющихся непрерывно по вполне определенным законам) ур-ний. В таких случаях применяют статистико-вероятностное (стохастич.) описание в виде нек-рых ф-ций распределения св-в процесса (ф-ции распределения частиц в-в по размерам, плотности и др., напр. при псевдоожижении; ф-ции распределения элементов потока по временам пребывания в аппаратах при диффузии или теплопереносе и т. д.; см. также <i> Трассёра метод</i>).<i></i> Далее анализируется кинетика хим. р-ций и фазовых переходов в условиях, близких к существующим условиям эксплуатации объекта, а также скорости массо- и теплопередачи и составляются соответствующие элементарные функциональные операторы. Кинетич. закономерности хим. превращений, массообмена и фазовых переходов обычно служат осн. источниками нелинейности (р-ции порядка, отличного от нуля и единицы, нелинейные равновесные соотношения, экспоненциальная зависимость кинетич. констант от т-ры и т. п.) в ур-ниях мат описания объекта моделирования. Мат. описание формируется объединением полученных на предшествующих этапах системного анализа функциональных операторов в единую систему ур-ний. Решение системы ур-ний мат. описания для заданной совокупности значении входных переменных (постоянных и изменяющихся во времени) и составляет основу мат моделирования, позволяющего исследовать св-ва объекта путем численных экспериментов на его мат. модели. Последняя дает возможность прогнозировать поведение объекта при изменениях входных переменных, решать задачи оптим. выбора конструктивных характеристик (проектирование), синтезировать системы управления, обеспечивающие заданные показатели его функционирования. При этом важное значение имеет выбор алгоритма (программы) решения системы ур-ний мат. описания т. наз. алгоритма моделирования. Как правило, мат. описание реальных объектов оказывается настолько сложным, что для реализации мат. моделирования необходимо использовать достаточно мощные ср-ва вычислит. техники. Поэтому разработка эффективных алгоритмов моделирования основа развития систем <i> автоматизированного проектирования</i> и <i> автоматизированного управления</i> для разл. химико-технОл. процессов. Идентификация мат. моделей объектов. Любая мат. модель лишь приближенное подобие объекта моделирования. Поэтому она дает только приближенные оценки показателей его функционирования. В последовательности этапов мат моделирования эти различия выявляются на этапе установления адекватности (соответствия) модели объекту, или ее идентификации. Результаты проверки адекватности могут оказаться неудовлетворительными, что потребует существенно изменить задачу, начиная с ее постановки. Адекватность модели объекту оценивается лишь при наличии эксперим. данных, полученных на объекте моделирования, с помощью т. наз. критерия адекватности; последний оценивает отклонения (рассогласование) опытных и расчетных значений соответствующих переменных объекта и модели. Конкретный вид критерия адекватности зависит от объема, состава и точности имеющихся опытных данных, типа модели, св-в объекта и т. д. Напр., для линейных по параметрам моделей широко применяется статистич. критерий Фишера (см. <i> Обработка результатов эксперимента, Планирование эксперимента</i>);<i></i> для нелинейных моделей чаще используются т. наз. квадратичные оценки рассогласования указанных эксперим. (у <sub> эксп</sub>)<i></i> и расчетных (y<sub> расч</sub>) значений переменных, напр., в след, форме: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/fb778902-80fb-4235-8b04-ed7029bfdd5c" alt="КИБЕРНЕТИКА фото" align="absmiddle" class="responsive-img img-responsive" title="КИБЕРНЕТИКА фото"> <br> где b<sub>i </sub>- т. наз. весовые коэф., с помощью к-рых учитываются значимость и точность отдельных измерений при общем числе их точек n. Поскольку в критерий адекватности входят расчетные значения переменных, его величина зависит от параметров модели. Это часто используется для т. наз. корректировки мат. модели по эксперим. данным, полученным на объекте моделирования. При этом решается задача минимизации критерия, в к-рой искомыми являются корректируемые значения параметров. Данный прием применяется также в т. наз. адаптивных моделях, в к-рых используются настроечные параметры для приведения в соответствие модели и объекта с изменяющимися характеристиками. Обратная связь как основа управления. Важнейшее понятие кибернетики - обратная связь, к-рая проявляется в обратном влиянии на процесс его собственного действия. Различают два вида обратной связи: положительную (усиливающую), напр. при тепловой неустойчивости хим. реактора, и отрицательную (ослабляющую), напр. при истечении жидкости из емкости под действием гидростатич. напора. В первом случае любое малое изменение т-ры в реакц. зоне приводит к такому резкому изменению тепловыделения, что р-ция либо угасает, либо переходит в режим с чрезмерным разогревом; во втором случае с увеличением притока в емкость жидкости уровень ее повышается, что автоматически вызывает увеличение стока, и наоборот. В технике обратная связь используется для автоматич. управления процессом, причем сигнал с выхода системы применяется для формирования управляющих воздействий. Пример-система управления хим. реактором, обеспечивающая соответствующее изменение теплосъема при изменении в зоне р-ции т-ры для поддержания заданного ее значения; датчик т-ры в реакторе связан через регулятор с исполнит. органом, управляющим расходом теплоносителя. В системах управления, построенных с использованием микропроцессорной техники, применяются также мат. модели управляемых объектов, что позволяет прогнозировать поведение объекта и вырабатывать управляющие воздействия, обеспечивающие его функционирование с заданными показателями при изменяющихся внеш. условиях. Анализ процессов и систем как объектов автоматического управления. Исследование как существующих, так и проектируемых химико-технол. процессов и их совокупности, химико-технол. схем или систем как объектов управления осуществляется в такой последовательности: 1) система представляется в виде отдельных элементов или подсистем, к-рые отвечают отдельным аппаратам либо группам аппаратов, объединенных функциональными связями; 2) формулируется задача управления системой; 3) выявляются входные, выходные и управляемые переменные, возмущающие и управляющие воздействия как для каждой из подсистем, так и для системы в целом; 4) составляется мат. описание динамич. поведения отдельных подсистем и всей системы; 5) анализируются характеристические св-ва (напр., чувствительность, управляемость, помехозащищенность, устойчивость) системы как объекта управления. При исследовании типовой ХТС как объекта автоматич. управления каждый ее элемент представляется в виде имеющего входы и выходы многомерного технол. оператора, к-рый в значит. степени подвержен измеряемым и неизмеряемым возмущениям, локализуемым с помощью управляющих воздействий. Отдельные технол. операторы взаимод. благодаря наличию между ними определенных технол. и информац. связей, к-рым отвечают материальные, энергетич. и информац. потоки. При этом эффективность функционирования и качество управления можно повысить как путем улучшения показателей качества работы технол. операторов и управления ими (интенсификация технол. режимов, переход к предельным режимам работы операторов по нагрузке и создание соответствующих систем автоматизир. управления), так и изменением связей между существующими в системе операторами и введением дополнит. операторов и новых связей. <i> Лит</i>.: Кафаров В. В., Ветохия В. Н., Основы построение операционных систем в химической технологии, М., 1980; Ицкович Э. Л., ЭВМ в системе управления предприятиями, М., 1980; Перов В. Л., Егоров А. Ф., Хабарин А. Ю., Управление химико-технологическими системами, М., 1981; Кафаров В. В., Кибернетика в химической технологии, М., 1984; Кафаров В. В.. Методы кибернетики в химии и химической технологии, 4 изд., М., 1985; Эберт К., Эдерер X., Компьютеры. Применение в химии, пер. с нем., М., 1988. <i> В. В. Кафаров.</i> <p><br></p><b>Синонимы</b>: <div class="tags_list"> нейрокибернетика, продажная девка империализма </div><br><br>... смотреть

КИБЕРНЕТИКА

интеграционная наука об оптимальном управлении сложными динамическими системами, независимо от того, какова природа и сущность системы — биологическая, техническая, социальная и т.п. При этом кибернетика интересует то общее, что определяет основу управления вообще, независимо от специфики объектов и субъектов управления. Раскрывая общие принципы процесса управления, кибернетика одновременно выявляет условия и средства, с помощью которых управление будет осуществляться наиболее оптимально. Термин «кибернетика.» введен Ампером в начале XIX в. для обозначения гипотетической науки об управлении государством. Однако сама наука возникла значительно позже — в середине XX в., когда Н. Винером были обобщены методы познания сложных динамических высокоорганизованных систем — живой и неживой природы. Кибернетика использует современный математический аппарат и инструментарий. Логические и математические основания кибернетика, ее подход и методы, вычислительные средства и инструментарий значительно расширяют возможности анализа социальных систем и процессов, повышают эффективность управленческой деятельности. Изучение количественных характеристик различных социальных, экономических объектов и выражение их средствами математики дает возможность глубже понять качественные особенности общественных явлений, осмыслить их теоретически и тем самым более активно практически воздействовать на них. Крупнейшие представители кибернетики рассматривают ее также как науку о течении информационных процессов. «Кибернетика, — пишет акад. В. М. Глушков, — это наука об общих законах преобразования информации в сложных управляющих системах». С информацией связывает кибернетику акад. А.Н. Колмогоров, который определяет кибернетика. как науку «о способах восприятия, хранения, переработки и использования информации». Кибернетика. обосновала сигнальный характер информации, используемой в управлении динамическими системами, показала, что сигнальная форма информации составляет непременную черту процессов управления. Кибернетика не только раскрыла единство управления и информации в различных самоуправляемых системах, синтезировав при этом ряд теорий (теорию информации, теорию алгоритмов и теорию автоматического управления), но дала эффективный метод исследования этих систем (моделирование), способствовала обогащению не только синтаксического, но и семантического и прагматического аспектов информации. Установив единство управления и информации, кибернетика рассматривает и то и другое безотносительно к содержанию, качественной специфике системы. Поэтому кибернетический анализ процессов управления и информации, присущий каждой определенной системе, необходимо дополнять специфическим анализом, выявляющим качественную сущность, природу системы. Кибернетика. изучает только те системы, которые обладают свойством гомеостаза, т.е. системы, способные автоматически выравнивать равновесное (в заранее заданном режиме) положение. К. установила, что независимо от природы сложных динамических систем процессы управления в них регулируются в соответствии с рядом фундаментальных принципов: необходимого разнообразия; соответствия управляющей и управляемой подсистем; обратной связи; внешнего дополнения; «черного ящика». Суть принципа необходимого разнообразия сводится к тому, что разнообразие сложного объекта управления обусловливает необходимость в таком субъекте управления, который сам обладает необходимым разнообразием. Иными словами, разнообразие состояний управляющей подсистемы должно быть не меньше разнообразия управляемой подсистемы. Принцип соответствия управляющей и управляемой подсистем позволяет решить проблему устойчивости и качества управления. Управляющая подсистема должна соответствовать управляемой не только в функциональном, структурном и информационном отношении. Управление с учетом действия принципа обратной связи позволяет отслеживать положение объекта управления на каждый момент времени, контролировать прохождение сигналов — команд. Принцип внешнего дополнения свидетельствует о том, что данная большая система входит составной частью в следующую по уровню иерархии метасистему, и целевые функции исследуемой системы должны распространяться за ее границы, т.е. определяться метасистемой. Принцип внешнего дополнения играет важнейшую роль в синтезе работоспособных систем, подверженных большому числу случайных возмущений, а также при анализе функций системы во взаимодействии с внешней средой. В кибернетике широко используется принцип анализа системы, известный под названием «метод черного ящика». Сущность этого метода заключается в следующем. Иногда субъект управления по разным причинам не располагает всей информацией относительно организации, структуры и взаимодействия элементов в объекте управления. Однако, несмотря на отсутствие полной информации,. на основе изучения связи между внешним воздействием на систему и реакцией системы на это воздействие, а также на основе соответствия между информацией на входе и выходе управляемой системы имеется возможность управлять поведением системы, хотя сущность или механизм внутреннего устройства, а также взаимодействие элементов системы не совсем ясны и доступны для исследователя. Кибернетика оказала исключительное влияние на разработку и проектирование разнообразной электронно-вычислительной техники, на автоматизацию процессов управления. ... смотреть

КИБЕРНЕТИКА

(от греч, kybernetike — искусство управления), наука об общих закономерностях получения, хранения, передачи и переработки информации. Осн. объект исследования — т. н. кибернетич. системы, рассматриваемые абстрактно, вне зависимости от их материальной природы. Примеры кибернетич. систем — автоматич. регуляторы в технике, ЭВМ, человеческий мозг, социально-экономич. комплексы (предприятия, отрасли нар. х-ва, терр. комплексы) и др. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать н перерабатывать информацию, а также обмениваться ею. Методы К.— метод математич. регулирования систем и процессов управления, системный анафаз и вытекающий из него системный подход к процессам управления.Осн. цель К.— оптимизация систем управления, создание технич. устройств, на к-рые можно было бы переложить ряд функций интеллекта. Осн. технич. средства для решения задач К.— ЭВМ. Поэтому возникновение К. как самостоят. науки (Н. Винер, 1948) связано с созданием в 40-х гг. 20 в. этих машин, а развитие К. в теоретич. и практич. аспектах — с прогрессом электронной вычислит, техники. Теоретич. ядро К. составляют теория информации, теория алгоритмов, теория автоматов, исследование операций, теория оптим. управления, теория распознавания образов. Прикладная К. подразделяется на технич,, экономии, и <i>биологическую кибернетику. </i>Технич. К. занимается вопросами автоматизации технол. процессов, разработки и конструирования автоматов, в т. ч. вычислит, техники и роботов, технич. реализации устройств автоматич. распознавания и др. В экономич. К. методы и средства используются для исследования и организации управления в экономич. системах. Сфера её приложения — проблемы автоматизации и оптимизации управления отраслями пар. х-ва, экономич. р-нами, предприятиями н т. п. Осн. практич. выход экономич. К.— разработка и создание <i>автоматизированных систем управления </i>(АСУ). Биол. К. изучает процессы хранения, передачи и переработки информации в живых организмах. Промежуточное звено между технич. и биол. К.— <i>бионика, </i> в к-рой модели биол. систем используются как прототип технич. устройств. Методы технич. К. применяются в с. х-ве для автоматизации технол. процессов и создания технич. подсистем АСУ с.-х. произ-вом (АПК); экономич. К.— для моделирования экономич. процессов и создания организа-ционно-экономич. АСУ с.-х. произ-вом (АПК). <p>К. преподают в с.-х. ин-тах на экономич. ф-тах; специалистов по К. (экономист-математик) готовят Ленингр. с.-х. ин-т, Моск. с.-х. академия им. К. А. Тимирязева, Укр. с.-х. академия, Одесский и Новосибирский с.-х. ин-ты. Науч. проблемами К. в с. х-ве занимаются Всес. н.-и. и проектно-технол. ин-т кибернетики Госагропрома СССР, а также ряд ин-тов экономики, механизации и электрификации с. х-ва. Координирует работу по К. в с. х-ве (в области информац. обеспечения отрасли) Отдел экономич. исследований и информационно-вычислит. обеспечения Госагропрома СССР.</p> <p>• Винер Н., Кибернетика и общество. пер. с англ., М., 1958: Афанасьев В. Г., Социальная информация и управление обществом, М.. 1975: Кобринский Н. Е., Майминас Е. 3., Смирнов А. Д., Введение в экономическую кибернетику, М., 1975: Кибернетика и современное научное познание, М., 1976; Коршунов Ю. М., Математические основы кибернетики, 2 изд., М.. 1980: Крайзмер Л. П., Кибернетика, 2 изд., М., 1985.</p> <br><b>Синонимы</b>: <div class="tags_list"> нейрокибернетика, продажная девка империализма </div><br><br>... смотреть

КИБЕРНЕТИКА

- наука об управлении и связи в живом организме и машине (Н. Винер); изучает хранение, передачу и переработку информации и ее использование для управления и регулирования в сложных динамич. системах, т. е. общие закономерности процессов управления, формализуемых математически в теоретич. и воплощаемых практически отраслями прикладной К. Высокая степень общности системного подхода выражает тенденцию к интеграции научного знания и определяет влияние К., первоначально возникшей преимущественно из нужд технич. прогресса, на разл., в т. ч. гуманитарные, обл. науки. <p class="tab">В СССР К. бурно развивается начиная с конца 50-х гг. (до этого рассматривалась как "бурж. лженаука"). Публикуются ключевые работы Н. Винера, У. Росс Эшби, Дж. Неймана, в 1959 создается Научный совет по комплексной проблеме "Кибернетика" АН СССР. В 60-е гг. в обл. К. активно работают специалисты по системотехнике, радиоэлектронике и вычислит. технике, физиологии, математики, философы (А. И. Берг, В. М. Глушков, П. К. Анохин, Н. А. Бернштейн, А. Н. Колмогоров, А. А. Ляпунов, А. А. Марков, Б. В. Бирюков и др.). </p><p class="tab">В большой мере под влиянием К. и связ. с ней теории информации и теории систем в гуманитарные науки проникает стремление к точным методам (в лингвистике это было вызвано, в частности, необходимостью создания высокоформализов. моделей для машинной обработки текстов на естеств. яз). Своеобраз. точкой пересечения методов К., лингвистики и искусствознания оказалось, напр., стиховедение: стихотворение как произв. иск-ва и текст на естеств. яз. - идеальный испытат. полигон, т. к. оно подчиняется определ. статистич. закономерностям, может быть истолковано как система, оно обладает структурой, включается в др. системы (его эл-ты принадлежат одновременно естеств. яз. стиховым конвенциям, стилю, направлению, идиолекту автора), содержит информацию, имеет целью произвести опред. эстетич. эффект, т. е. управлять адресатом в процессе коммуникации. </p><p class="tab">Лит.: Росс Эшби У. Введение в кибернетику. М., 1959; Кибернетику - на службу коммунизму. М., 1961-67. Т. 1-5; Винер Н. Кибернетика, или управление и связь в животном и машине. М., 1968; Берг А. И. и др. Управление, информация, интеллект. М., 1976; Кибернетика: Указ. отеч. изд. / Сост. Т. К. Тарасова и др. Л., 1983.</p>... смотреть

КИБЕРНЕТИКА

киберне́тика наука об управлении, связи и переработке информации. Основной объект исследования – кибернетические системы самой различной материально... смотреть

КИБЕРНЕТИКА

КИБЕРНЕТИКА[гр. kybernetike - искусство управления] - наука об общих закономерностях процессов управления и связи в живых организмах, машинах и обществ... смотреть

КИБЕРНЕТИКА

(от греч. kybernetike — искусство управления) — наука об управлении, получении, передаче и преобразовании информации. Объектом ее изучения является динамическая система, т. е. система, способная воспринимать и перерабатывать информацию, а также обмениваться ею, система, которая способна к развитию своих состояний. Подобные системы могут являться чисто биологическими, их популяциями, социальными, чисто техническими или смешанными, напр., СЧМ. Предметом К. являются процессы управления, происходящие в сложных динамических системах, т. е. из определения К. как науки, определения ее объекта и предмета исследования можно заключить, что СЧМ также относится к категории кибернетических объектов, а психические процессы деятельности человека по управлению системой (именно всей системой, поскольку человек-оператор в процессе целенаправленной деятельности управляет не только машиной, но и самим собой) в общем виде могут явиться предметом изучения К. Причем именно в общем виде/поскольку К. изучает лишь наиболее общие объективные закономерности процессов управления, не вторгаясь в решение конкретных задач, присущих отдельным наукам (и тем более психологии, где наряду с объективными изучаются и субъективные процессы). К. выдвинула и объединила такие понятия, как система, управление, информация, обратная связь, черный ящик, без которых не могла бы существовать инженерно-психологическая теория. К. ввела принципиально новый метод исследования — имитационное моделирование (машинный, или математический, эксперимент), который широко используется и в инженерной психологии. Кроме того, она породила новые области знаний, способствующие углублению перечисленных понятий и методов. Одной из таких областей является общая теория систем, цель которой состоит в создании абстрактной методики, пригодной для описания систем любой природы: биологических, технических, социальных и др. Идеи этой теории, а также связанного с ней системного подхода широко используются в инженерной психологии (М. А. Котик).... смотреть

КИБЕРНЕТИКА

Киберне́тика - наука об управлении, связи и переработке информации. Основной объект исследования - кибернетические системы самой различной материальной природы: автоматические регуляторы в технике, компьютеры, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Слово «кибернетика» происходит от греческого kybernetiké - искусство управления. Термин был введён в 1948 г. математиком Н. Винером в книге «Кибернетика, или Управление и связь в животном мире и машине». Современная кибернетика состоит из ряда разделов, представляющих собой самостоятельные научные направления, такие, как теория информации, теория алгоритмов, теория автоматов, исследование операций, теория оптимального управления, теория распознавания образов. Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики - компьютеры. Возникновение кибернетики как самостоятельной науки связано с созданием в 40-х гг. 20 в. ЭВМ, а развитие кибернетики - с прогрессом электронной вычислительной техники и, в первую очередь, микроэлектроники. Важнейшие направления исследований - разработка и создание автоматических и автоматизированных систем управления, а также автоматических устройств и систем передачи, переработки и хранения информации. Техническая кибернетика - отрасль науки, изучающая технические средства и системы управления. Кибернетика является частью более общей науки, изучающей все аспекты получения, хранения, передачи и использования информации. В англоязычных странах она носит название «вычислительная наука» (computer science), а во франкоязычных странах и в нашей стране - «информатика» (informatique).... смотреть

КИБЕРНЕТИКА

(от греч. kybernetike - искусство управления, от kybernao - правлю рулём, управляю) - наука об управлении, связи и переработке информации. К. изучает п... смотреть

КИБЕРНЕТИКА

КИБЕРНЕТИКАинформатика, наука о связи и управлении в машинах и живых организмах. Первым употребил термин "кибернетика", по-видимому, древнегреческий философ Платон. Более ста лет назад это слово было использовано А.Ампером, а затем и другими европейскими авторами в более ограниченном социологическом смысле. Оно происходит от греческого слова, означающего "рулевой". Когда в 1948 Норберт Винер использовал этот термин, он не знал о более ранних его употреблениях. Он пытался найти удобный способ объединения различных наук, относящихся к коммуникациям и управлению, под одним именем, которое отражало бы их методологическое единство. Это единство зиждется на статистической идее информации как функции вероятности. Если новая информация превращает набор случайных событий, имеющий первоначальную общую вероятность P, в набор с общей вероятностью p, то это означает, что информация имеет такую же природу и меру, как и энтропия в статистической механике, но противоположный знак. (Дело в том, что энтропия стремится к максимуму при росте неопределенности случайной величины, тогда как информация ведет себя противоположным образом.) При таком подходе теория информации становится ветвью статистической механики, и второй закон термодинамики принимает, с точки зрения теории информации, следующую форму: любая обработка информации от известных источников может только уменьшать численную меру информации. Это, конечно, не означает, что обработка не дает никаких преимуществ или что обрабатывать информацию нецелесообразно. Важно то, что во внимание принимается вся информация, а способ ее обработки не должен налагать на нее каких-либо ограничений.Статистическая концепция информации уже доказала свою пользу в технике связи, анализе проблем кодирования и, до некоторой степени, в исследовании функционирования нервной системы. См. также АВТОМАТИЗАЦИЯ; ИНТЕЛЛЕКТ ИСКУССТВЕННЫЙ.... смотреть

КИБЕРНЕТИКА

Кибернетика (от греч. kybernetike - искусство управления) наука об управлении, связи и переработке информации. Основной объект исследования - т. н. к... смотреть

КИБЕРНЕТИКА

(от гр. kybernetike - искусство управления; англ. cybernetics) - отрасль технических наук, которая исследует закономерности, необходимые для разработк... смотреть

КИБЕРНЕТИКА

от гр. kubernqtes — кормчий): буквально «искусство управлять». Судьба этого термина неоднозначна. Учрежденный Платоном в его «Диалогах», необдуманно и безуспешно использованный Ампером в 1834 г. в его «Классификации наук», он был вновь подхвачен в 1950-1960 гг. и широко распространился в применении к исследованиям о саморегулирующихся машинах, оснащенных «псевдо-мозгом», и, в некотором роде, способных управлять своим трудом (автоматический пилотаж самолетов, системы детектирования, позволяющие ракетам самим ориентироваться на цель, и т.д.). Быстрое распространение этой науки — настоящего «перекрестка наук» — обеспокоило некоторые умы, по причинам, которые в одинаковой степени могут быть как теологическими или моральными, так и вдохновленными мифом об «ученике чародея»: общая проблема, поставленная кибернетикой, состоит в познании того, можно ли вместе с машинами «создать разум», могут ли машины не быть обязанными творческому уму, доверившему им определенную автономию по отношению к человеку и способность избежать его контроля. В действительности вполне очевидно, что мы никогда не найдем в машине «больше» разума, чем в мозге того, кто был создателем машины, и что разум машины — лишь продукт человеческого разума. Прочтите книгу Л. Рюйера «Парадоксы сознания и границы автоматизма» (1966): ... смотреть

КИБЕРНЕТИКА

(от гр. kubernqtes — кормчий): буквально «искусство управлять». Судьба этого термина неоднозначна. Учрежденный Платоном в его «Диалогах», необдуманно и безуспешно использованный Ампером в 1834 г. в его «Классификации наук», он был вновь подхвачен в 1950-1960 гг. и широко распространился в применении к исследованиям о саморегулирующихся машинах, оснащенных «псевдо-мозгом», и, в некотором роде, способных управлять своим трудом (автоматический пилотаж самолетов, системы детектирования, позволяющие ракетам самим ориентироваться на цель, и т.д.). Быстрое распространение этой науки — настоящего «перекрестка наук» — обеспокоило некоторые умы, по причинам, которые в одинаковой степени могут быть как теологическими или моральными, так и вдохновленными мифом об «ученике чародея»: общая проблема, поставленная кибернетикой, состоит в познании того, можно ли вместе с машинами «создать разум», могут ли машины не быть обязанными творческому уму, доверившему им определенную автономию по отношению к человеку и способность избежать его контроля. В действительности вполне очевидно, что мы никогда не найдем в машине «больше» разума, чем в мозге того, кто был создателем машины, и что разум машины — лишь продукт человеческого разума. Прочтите книгу Л. Рюйера «Парадоксы сознания и границы автоматизма» (1966):... смотреть

КИБЕРНЕТИКА

- (от греч. kybernetike - искусство управления) - наука обуправлении, связи и переработке информации. Основной объект исследования -т. н. кибернетические системы, рассматриваемые абстрактно, вне зависимостиот их материальной природы. Примеры кибернетических систем -автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологическиепопуляции, человеческое общество. Каждая такая система представляет собоймножество взаимосвязанных объектов (элементов системы), способныхвоспринимать, запоминать и перерабатывать информацию, а также обмениватьсяею. Современная кибернетика состоит из ряда разделов, представляющих собойсамостоятельные научные направления. Теоретическое ядро кибернетикисоставляют информации теория, теория алгоритмов, теория автоматов,исследование операций, теория оптимального управления, теорияраспознавания образов. Кибернетика разрабатывает общие принципы созданиясистем управления и систем для автоматизации умственного труда. Основныетехнические средства для решения задач кибернетики - ЭВМ. Поэтомувозникновение кибернетики как самостоятельной науки (Н. Винер, 1948)связано с созданием в 40-х гг. 20 в. этих машин, а развитие кибернетики втеоретических и практических аспектах - с прогрессом электроннойвычислительной техники ТЕХНИЧЕСКАЯ - см. Техническая кибернетика.... смотреть

КИБЕРНЕТИКА

КИБЕРНЕТИКА (от греч . kybernetike - искусство управления), наука об управлении, связи и переработке информации. Основной объект исследования - т. н. кибернетические системы, рассматриваемые абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем - автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Современная кибернетика состоит из ряда разделов, представляющих собой самостоятельные научные направления. Теоретическое ядро кибернетики составляют информации теория, теория алгоритмов, теория автоматов, исследование операций, теория оптимального управления, теория распознавания образов. Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики - ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (Н. Винер, 1948) связано с созданием в 40-х гг. 20 в. этих машин, а развитие кибернетики в теоретических и практических аспектах - с прогрессом электронной вычислительной техники<br><br><br>... смотреть

КИБЕРНЕТИКА

КИБЕРНЕТИКА (от греч. kybernetike - искусство управления) - наука об управлении, связи и переработке информации. Основной объект исследования - т. н. кибернетические системы, рассматриваемые абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем - автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Современная кибернетика состоит из ряда разделов, представляющих собой самостоятельные научные направления. Теоретическое ядро кибернетики составляют информации теория, теория алгоритмов, теория автоматов, исследование операций, теория оптимального управления, теория распознавания образов. Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики - ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (Н. Винер, 1948) связано с созданием в 40-х гг. 20 в. этих машин, а развитие кибернетики в теоретических и практических аспектах - с прогрессом электронной вычислительной техники<br>... смотреть

КИБЕРНЕТИКА

(от греч. искусство управления), наука об управлении, связи и переработке информации. Осн. объект исследования -т. н. кибернетич. системы, рассматривае... смотреть

КИБЕРНЕТИКА

от греч. kybernetike - искусство управления) наука об управлении, связи и переработке информации. Основной объект исследования - т. н. кибернетические системы, рассматриваемые абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем - автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Современная кибернетика состоит из ряда разделов, представляющих собой самостоятельные научные направления. Теоретическое ядро кибернетики составляют информации теория, теория алгоритмов, теория автоматов, исследование операций, теория оптимального управления, теория распознавания образов. Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики - ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (Н. Винер, 1948) связано с созданием в 1940-х гг. этих машин, а развитие кибернетики в теоретических и практических аспектах - с прогрессом электронной вычислительной техники.... смотреть

КИБЕРНЕТИКА

(от греч. kybernetike - иск-во управления), наука об управлении, связи и переработке информации. Объектами исследования К. являются т.н. кибернетич. си... смотреть

КИБЕРНЕТИКА

наука об управлении, связи и переработке информации. Осн. объект исследования — т.н. кибернетич. системы (далее —К-системы), рассматриваемые абстрактно, вне зависимости от их материальной природы. Примеры К-систем: автоматич. регуляторы в технике, ЭВМ, чел. мозг, биопопуляции, чел. об-во. Каждая такая система представляет собой мн-во взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Совр. К. включает ряд разделов, представляющих собой самост. науч. направления. Теор. ядро К. составляют теория информации, теория алгоритмов, теория автоматов, исследование операций, теория оптимального управления, теория распознавания образов. К. разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Осн. техн. средства для решения задач К. —ЭВМ. Поэтому возникновение К. как самост. науки (Н.Винер, 1948) связано с созданием в 1940-х гг. этих машин, а развитие К. в теор. и практ. аспектах —с прогрессом электронной вычислит. техники. Б.Н.Махутов ... смотреть

КИБЕРНЕТИКА

КИБЕРНЕТИКА и, ж. cybernétique f., нем. Kybernetik &LT;англ. cybernetics &LT;гр.kubernan управлять. спец. Совокупность теорий и гипотез, относящихся к... смотреть

КИБЕРНЕТИКА

(cybernetics) — *наука управления, обработки и передачи информации живыми организмами и машинами*. Внедренный Нобертом Винером в 1948 г. и простимулированный появлением современных вычислительных машин, термин предназначался для привлечения внимания к общим процессам действия систем всех типов, будь то механических (например, термостатически управляемой центрально-отопительной системой), биологических или социальных систем. Все они регулируют свое отношение к внешней окружающей среде за счет цикла обратной связи, и любые изменения сообщаются им таким способом, который вызывает соответствующую корректировку для поддержания устойчивого или иного состояния, соответствующего эффективному их функционированию или выживанию (см. также Кибернетическая иерархия). Кибернетика и кибернетические аналогии были в моде в 50-х и 60-х гг., но впоследствии испытали на себе критику функционалистских идей и сциентизма в социальных науках. См. также Теория систем; Структурный функционализм.... смотреть

КИБЕРНЕТИКА

1) Орфографическая запись слова: кибернетика2) Ударение в слове: киберн`етика3) Деление слова на слоги (перенос слова): кибернетика4) Фонетическая тран... смотреть

КИБЕРНЕТИКА

КИБЕРНЕТИКА экономическая (от греч, kybernetike - искусство управления) наука об общих закономерностях управления экономическими системами и об испо... смотреть

КИБЕРНЕТИКА

наука об общих закономерностях построения управляющих систем и о процессах управления. Основными объектами исследования являются так называемые киберне... смотреть

КИБЕРНЕТИКА

наука, занимающаяся разработкой общих принципов создания систем управления и систем автоматизации умственного труда. Основными объектами исследования являются кибернетические системы, рассматриваемые абстрактно, вне зависимости от их материальной природы. В число дисциплин, изучаемых К., входят: теория информации, теория алгоритмов, теория автоматов, исследование операций, теория оптимального управления, теория распознавания образцов.<br><p class="src"><em><span itemprop="source">Словарь бизнес-терминов.<span itemprop="author">Академик.ру</span>.<span itemprop="source-date">2001</span>.</span></em></p><b>Синонимы</b>: <div class="tags_list"> нейрокибернетика, продажная девка империализма </div><br><br>... смотреть

КИБЕРНЕТИКА

наука о законах управления, связи и переработки информации. Основными объектами исследований К. являются процессы управления в технических, биологическ... смотреть

КИБЕРНЕТИКА

гр. искусство управления) — наука об управлении, связи и переработке информации (см. Информация, Управление). Возникновение кибернетики как самостоятельной науки связано с открытиями Н. Винера  (1894 — 1964) в 1948 г. Основной объект исследования — кибернетические системы, рассматриваемые абстрактно, вне зависимости от их материальной природы. Примеры систем — автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество (см. Система, Система(ы) биологическая(ы)). Теоретическое ядро кибернетики составляют теория информации, теория алгоритмов, теория автоматов, исследование операций, теория оптимального управления, теория распознавания образов. ... смотреть

КИБЕРНЕТИКА

КИБЕРНЕТИКА, дисциплина, посвященная изучению систем управления и коммуникации у животных, в организациях и механизмах. Термин был впервые применен в э... смотреть

КИБЕРНЕТИКА

— наука об общих закономерностях процессов управления и связи в организованных системах, машинах, живых организмах и их объединениях. К. определяют так же, как науку о способах восприятия, передачи, переработки и использования информации в машинах, живых организмах и их объединениях.<br><p class="src"><em><span itemprop="source">Геологический словарь: в 2-х томах. — М.: Недра</span>.<span itemprop="author">Под редакцией К. Н. Паффенгольца и др.</span>.<span itemprop="source-date">1978</span>.</em></p><b>Синонимы</b>: <div class="tags_list"> нейрокибернетика, продажная девка империализма </div><br><br>... смотреть

КИБЕРНЕТИКА

Дисциплина, разработанная в значительной степени в ра-оотах Норберта Вайнера, название ее происходит от греческого слова, оз-чающего "кормчий". Прежде всего эта дисциплина изучает механизмы управления и связанные с ними коммуникационные системы, особенно те, которые используют обратную связь с механизмом относительно его работы. За годы своего развития кибернетика стала многоотраслевой наукой, включающий в себя инженерию, компьютерные науки, психологию, биологию, социологию и т.д. Фактически объединение с другими отраслями было так: фективно, что сам термин вышел из употребления.... смотреть

КИБЕРНЕТИКА

от греч. kybernetike [techne] - искусство управления) - наука о самоуправляющихся машинах, в частности о машинах с электронным управлением ("электронный мозг"). Кибернетика получила самое широкое распространение в последней трети 20 в. и сейчас находит широкое применение также в биологии и социологии. "Отец кибернетики" амер. ученый Норберт Винер в труде "Кибернетика, или Управление и связь в животном и машине" (1948) показал, что человеческий мозг действует наподобие электронных вычислительных машин с двоичной системой исчисления. ... смотреть

КИБЕРНЕТИКА

cybernetics* * *киберне́тика ж.cyberneticsтехни́ческая киберне́тика — engineering cyberneticsэкономи́ческая киберне́тика — economic cyberneticкиберне... смотреть

КИБЕРНЕТИКА

(от греч. kybernetike [techne] искусство управления) наука о самоуправляющихся машинах, в частности о машинах с электронным управлением (*электронный мозг*). Кибернетика получила самое широкое распространение в последней трети 20 в. и сейчас находит широкое применение также в биологии и социологии. *Отец кибернетики* амер. ученый Норберт Винер в труде *Кибернетика, или Управление и связь в животном и машине* (1948) показал, что человеческий мозг действует наподобие электронных вычислительных машин с двоичной системой исчисления.... смотреть

КИБЕРНЕТИКА

Заимств. в 50-е годы XX в. из англ. яз. США, где cybernetics — семантический неологизм, созданный в лаборатории Н. Винера, на базе греч. kybernētikē «и... смотреть

КИБЕРНЕТИКА

        (греч.), наука о динамич., саморегулирующихся и самоорганизующихся системах. Амер. математик австр. происхождения Норберт Винер, сыгравший гл. ... смотреть

КИБЕРНЕТИКА

(от греч. kyberneuke — искусство управления) — наука об общих закономерностях процессов управления и связи в организованных системах (в машинах, живых организмах и обществе). Кибернетика получила самое широкое распространение в последней трети 20 в. и сейчас находит широкое применение также в биологии и социологии. Отец кибернетики и создатель термина (1947) американский ученый Норберт Винер показал, что человеческий мозг действует наподобие электронных вычислительных машин с двоичной системой счисления.... смотреть

КИБЕРНЕТИКА

Кибернетика – (от греч. kybernetike – искусство управления, от kybernao – правлю рулём, управляю) – наука об управлении, связи и переработке информации. Высокий уровень абстракции позволяет кибернетике применять общие методы и подходы к изучению систем качественно различной природы: технических, социальных, экономических и биологических.<p>[Кибернетика конструктивная. Словарь терминов. (Электронный ресурс). Режим доступа: http:// rdcn.ru›theory/dictionary.shtml/, свободный.]</p>... смотреть

КИБЕРНЕТИКА

наука, занимающаяся разработкой общих принципов создания систем управления и систем автоматизации умственного труда. Основными объектами исследования являются кибернетические системы, рассматриваемые абстрактно, вне зависимости от их материальной природы. В число дисциплин, изучаемых К., входят: теория информации, теория алгоритмов, теория автоматов, исследование операций, теория оптимального управления, теория распознавания образцов. ... смотреть

КИБЕРНЕТИКА

(от греч. kybernetike — искусство управления) — наука об общих принципах управления, связи и переработки информации в машинах, живых организмах и обществе, наука о самоуправляющихся машинах, в частности о машинах (устройствах) с электронным управлением («электронный мозг»). Начала современного естествознания. Тезаурус. — Ростов-на-Дону.В.Н. Савченко, В.П. Смагин.2006. Синонимы: нейрокибернетика, продажная девка империализма... смотреть

КИБЕРНЕТИКА

Киберне́тика. Заимств. в 50-е годы XX в. из англ. яз. США, где cybernetics — семантический неологизм, созданный в лаборатории Н. Винера, на базе греч. ... смотреть

КИБЕРНЕТИКА

корень - КИБЕРНЕТ; суффикс - ИК; окончание - А; Основа слова: КИБЕРНЕТИКВычисленный способ образования слова: Суффиксальный∩ - КИБЕРНЕТ; ∧ - ИК; ⏰ - А;... смотреть

КИБЕРНЕТИКА

-и, ж. Наука об общих закономерностях процессов управления и связи в организованных системах (в машинах, живых организмах и обществе).[От греч. κυβερν... смотреть

КИБЕРНЕТИКА

(от греч. kyberne - tice - искусство управления) - англ. cybernetics; нем. Kybernetik. Наука об общих законах получения, хранения, передачи и переработки информации в машинах, живых организмах, обществе. В зависимости от области применения различают полит., экон. и соц. К. Antinazi.Энциклопедия социологии,2009 Синонимы: нейрокибернетика, продажная девка империализма... смотреть

КИБЕРНЕТИКА

(cybernetics) наука, изучающая общие закономерности процессов управления, передачи информации и автоматического контроля в технических системах, живых организмах и в обществе; в процессе изучения проводится аналогия между функционированием нервной системы и головного мозга, в частности, работой компьютеров и автоматических систем обратной связи. См. также Бионика.... смотреть

КИБЕРНЕТИКА

кибернетика [< гр. kybernetike искусство управления] - наука об общих закономерностях процессов управления и передачи информации в машинах, живых орган... смотреть

КИБЕРНЕТИКА

сущ. жен. рода, только ед. ч.кібернетикаот слова: кибернетик сущ. муж. рода; одуш.кібернетик

КИБЕРНЕТИКА

киберне́тика, киберне́тики, киберне́тики, киберне́тик, киберне́тике, киберне́тикам, киберне́тику, киберне́тики, киберне́тикой, киберне́тикою, киберне́тиками, киберне́тике, киберне́тиках (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») . Синонимы: нейрокибернетика, продажная девка империализма... смотреть

КИБЕРНЕТИКА

ж. cibernetica f - биологическая кибернетика- математическая кибернетика- прикладная кибернетика- промышленная кибернетика- техническая кибернетика- э... смотреть

КИБЕРНЕТИКА

Ударение в слове: киберн`етикаУдарение падает на букву: еБезударные гласные в слове: киберн`етика

КИБЕРНЕТИКА

кибернетикаקִיבֶּרנֶטִיקָה נ'* * *קיברנטיקהСинонимы: нейрокибернетика, продажная девка империализма

КИБЕРНЕТИКА

- (от греч. kyberne- tice - искусство управления) - англ. cybernetics; нем. Kybernetik. Наука об общих законах получения, хранения, передачи и переработки информации в машинах , живых организмах, обществе. В зависимости от области применения различают полит., экон. и соц. К.... смотреть

КИБЕРНЕТИКА

(греч. kybemetike - искусство управления) - наука об общих закономерностях управления системами и об использовании информации в процессах управления.<br><b>Синонимы</b>: <div class="tags_list"> нейрокибернетика, продажная девка империализма </div><br><br>... смотреть

КИБЕРНЕТИКА

sibernetik* * *жsibernetik (-ği)Синонимы: нейрокибернетика, продажная девка империализма

КИБЕРНЕТИКА

/греч. kybernetike (techne) (искусство) управления/ наука о процессах управления и связанных с ними коммуникационных системах, в которых используется обратная связь. Основана рядом исследователей, из числа которых чаще упоминается Н. Винер.... смотреть

КИБЕРНЕТИКА

обобщающая наука или Метанаука, которая согласно своим принципам позволяет не только моделировать, но и предсказывать, использую модели в любых областях любых природных явлений. Прогнозирование является обязательным и главным ее свойством. ... смотреть

КИБЕРНЕТИКА

Rzeczownik кибернетика f cybernetyka f

КИБЕРНЕТИКА

— наука о процессах и законах управления, протекающих в сложных динамических системах природы, общества и человеческой культуры на основе использования информации. (См. цель, деятельность, целесообразность, информация).... смотреть

КИБЕРНЕТИКА

f.cyberneticsСинонимы: нейрокибернетика, продажная девка империализма

КИБЕРНЕТИКА

Ж kibernetika (idarə sistemləri, formaları, üsulları və vasitələri, yə'ni məqsədə doğru yönəldilmiş hərəkətlərin maşınlarda, canlı orqanizmlərdə və cəmiyyətdə təşkil və həyata keçirilməsi haqqında elm).... смотреть

КИБЕРНЕТИКА

кибернетика (греч. kybernetike искусство управления) — наука об управлении и переработке информации в любых системах: биологических, технических, экономических, в коллективах людей и т. д. <br><br><br>... смотреть

КИБЕРНЕТИКА

кибернетика, киберн′етика нэ , -и, ж. Наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе.<br>прил. кибернетический, -ая, -ое.<br><br><br>... смотреть

КИБЕРНЕТИКА

(от греч. kybernetike – искусство управления) – наука об общих законах получения, хранения, передачи и переработки информации. Кибернетический подход продуктивен и в психологических исследованиях.... смотреть

КИБЕРНЕТИКА

киберне'тика, киберне'тики, киберне'тики, киберне'тик, киберне'тике, киберне'тикам, киберне'тику, киберне'тики, киберне'тикой, киберне'тикою, киберне'тиками, киберне'тике, киберне'тиках... смотреть

КИБЕРНЕТИКА

КИБЕРНЕТИКА [нэ], -и, ж. Наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе. || прилагательное кибернетический, -ая,-ое.... смотреть

КИБЕРНЕТИКА

(греч. kybernetike искусство управления) наука об управлении и переработке информации в любых системах: биологических, технических, экономических, в коллективах людей и т. д.... смотреть

КИБЕРНЕТИКА

киберне́тика [нэ\]Синонимы: нейрокибернетика, продажная девка империализма

КИБЕРНЕТИКА

жcibernética fСинонимы: нейрокибернетика, продажная девка империализма

КИБЕРНЕТИКА

киберн'етика, -иСинонимы: нейрокибернетика, продажная девка империализма

КИБЕРНЕТИКА

ж.cybernétique fСинонимы: нейрокибернетика, продажная девка империализма

КИБЕРНЕТИКА

cybernetics– техническая кибернетикаСинонимы: нейрокибернетика, продажная девка империализма

КИБЕРНЕТИКА

жKybernetik fСинонимы: нейрокибернетика, продажная девка империализма

КИБЕРНЕТИКА

(1 ж)Синонимы: нейрокибернетика, продажная девка империализма

КИБЕРНЕТИКА

ж. cybernétique f

КИБЕРНЕТИКА

(греч. kybemetike искусство управления) наука об общих закономерностях управления системами и об использовании информации в процессах управления.

КИБЕРНЕТИКА

наук. кіберне́тика - биологическая кибернетика - энергетическая кибернетика Синонимы: нейрокибернетика, продажная девка империализма

КИБЕРНЕТИКА

ж.cibernética f

КИБЕРНЕТИКА

кибернетика ж Kybernetik fСинонимы: нейрокибернетика, продажная девка империализма

КИБЕРНЕТИКА

控制论 kòngzhìlùnСинонимы: нейрокибернетика, продажная девка империализма

КИБЕРНЕТИКА

наука об общих закономерностях управления экономическими системами и об использовании информации в процессах управления.

КИБЕРНЕТИКА

ж. cibernetica Итальяно-русский словарь.2003. Синонимы: нейрокибернетика, продажная девка империализма

КИБЕРНЕТИКА

сущ.жен.кибернетика (управлени ӗҫӗн, информации пӗтӗмӗшле законӗсене тата меслечӗсене тӗпчекен ӑслӑлӑх)

КИБЕРНЕТИКА

ж. cybernetics— биологическая кибернетика - медицинская кибернетика

КИБЕРНЕТИКА

от греч. искусство управления) — наука об управлении, связи и переработке информации (А. И. Серавин).

КИБЕРНЕТИКА

отгреч. kybernetike - искусство управления) - наука об управлении, связи и переработке информации.

КИБЕРНЕТИКА

кібернетыка, -кі- кибернетика математическая- кибернетика техническая

КИБЕРНЕТИКА

Кибернетика- cybernetica; кибернетический - cyberneticus;

КИБЕРНЕТИКА

Киберне́тикаkibernetiki (-)

КИБЕРНЕТИКА

(от греческого слова "кибернос" - рулевой) cybernetics

КИБЕРНЕТИКА

кибернетика продажная девка империализма

КИБЕРНЕТИКА

кіраваньне, кібэрнэтыка

КИБЕРНЕТИКА

cybernétique f

КИБЕРНЕТИКА

кибернетика = ж. cybernetics.

КИБЕРНЕТИКА

кибернетика киберн`етика, -и

КИБЕРНЕТИКА

кибернетика ж η κυβερνη τική

КИБЕРНЕТИКА

кибернетикаж ἡ κυβερνητική.

КИБЕРНЕТИКА

кібернетыка, жен.

КИБЕРНЕТИКА

кибернетика кибернетика

КИБЕРНЕТИКА

Кибернетик

КИБЕРНЕТИКА

kibernetik, sibernetik

КИБЕРНЕТИКА

{N} կիբեռնետիկա

КИБЕРНЕТИКА

кібернетыка, -кі

КИБЕРНЕТИКА

ж. Kybernetik f.

КИБЕРНЕТИКА

• kybernetika

КИБЕРНЕТИКА

кібернетыка

КИБЕРНЕТИКА

кибернетика

КИБЕРНЕТИКА

кибернетика

КИБЕРНЕТИКА

кибернетика

КИБЕРНЕТИКА

кибернетика

КИБЕРНЕТИКА

кибернетика

КИБЕРНЕТИКА

кибернетика

КИБЕРНЕТИКА

Кібернетыка

T: 380